QUESTION

(i) Define the Möbius function, $\mu(n)$.
(ii) Let G denote the cyclic group of order n. For each positive integer, d, dividing n set

$$
f(d)=|\{g \in G \mid \operatorname{order}(g)=d\}|,
$$

the number of elements of order d in G. Use the Möbius Inversion Formula to show that

$$
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) d
$$

where the sum is over all positive divisors of n.
(iii) What is the relation between (ii) and Euler's function, $\phi(n)$?

ANSWER
(i) By definition

$$
\mu n=\left\{\begin{array}{cl}
1 & \text { if } n=1 \\
0 & \text { if } n>1 \text { and } p^{2} \mid n \text { for some prime } p \\
(-1)^{t} & \text { if } n \text { is the product of } t \text { distinct primes }
\end{array}\right.
$$

(ii) Every element of G has precisely one order, D, which divides n. Since G is cyclic every possible d occurs as the order of some element. Hence we have

$$
n=|G|=\sum_{d \mid n} f(d)=F(n)
$$

By the Möbius Inversion Formula

$$
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) F(d)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) d
$$

(iii) Let $g \in G$ denote a generator. The element of G of order n are precisely the g^{j} with $\operatorname{gcd}(j, n)=1$. Also distinct such j 's give rise to distinct g^{j} 's so that $f(n)=\phi(n)$. The formula

$$
\phi(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) d
$$

