QUESTION

(i) State the Law of Quadratic Reciprocity.
(ii) Use (i) to evaluate the Legendre symbol $\left(\frac{3}{p}\right)$ when p is an odd prime. More precisely, show that

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{cc}
1 & \text { if } p \equiv \pm 1 \text { (modulo 12) } \\
-1 & \text { if } p \equiv \pm 5 \text { (modulo } 12 \text {). }
\end{array}\right.
$$

ANSWER

(i) The Law of Quadratic Reciprocity states that, if p and q are distinct odd primes then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}
$$

(ii) Therefore

$$
\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{\frac{(p-1)}{2}}
$$

and

$$
\left(\frac{p}{3}\right)=\left\{\begin{array}{cl}
1 & \text { if } p \equiv 1(\text { modulo } 3) \\
-1 & \text { if } p \equiv-1 \text { (modulo } 3) .
\end{array}\right.
$$

Also $p=3 k \pm 1$ can only happen if $k=2 s$, since p is odd. Hence we write $p=6 s \pm 1$. The possibilities modulo 12 for p are $12 t-1,12+$ $1,12 t+5,12+7$ which we shall deal with case by case.
If $p=12-1$ then

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)(-1)^{\frac{(p-1)}{2}}=(-1)(-1)^{(6 t-1)}=1
$$

If $p=12 t+1$ then

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)(-1)^{\frac{(p-1)}{2}}=(-1)^{(6 t)}=1
$$

If $p=12 t+5$ then

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)(-1)^{\frac{(p-1)}{2}}=(-1)^{(6 t+3)}=-1,
$$

as required.

