QUESTION

Find all the solutions of each of the following congruences, expressing your answers in terms of congruence classes, $[x]$:
(i) $7 x \equiv 29$ (modulo 64),
(ii) $3 x^{5}+x^{3}+3001 \equiv 9($ modulo 14$)$.

ANSWER
(i) Since 7 is odd, the residue class [7] represent a unit modulo 64. Hence we need only find the unique $[y] \in U_{64}$ such that $[x][y]=[1]$ and then the unique solution to (1) is $[x]=[29 y] \in U_{64}$. Since $7^{2}=49=3 \times 16+1$ we see that $y=16 k+7$ for some integer k. Now consider the congruence

$$
7 \times(16 K+7)=1+16(7 k+3)(\text { modulo } 64)
$$

If we choose $7 k+3$ to be a multiple of 4 then we have a suitable solution for y. The smallest convenient value is $k=3$ and $y=55$. Hence the only solution is $x \equiv 29 \times 55 \equiv 59$ (modulo 64) of $[x]=[59] \in U_{64}$.
(ii) We begin by finding all the solutions to this congruence modulo 2 and 7. Modulo 2 all x will yield a solution, Modulo 7 there is no solution if $x \equiv 0$ (modulo 7) since $3001 \equiv 201 \equiv 61 \equiv 5$ (Modulo7). If $x=1,2,4$ then $x^{3} \equiv 1$ (modulo 7) while if $x=3,5,6$ then $x^{3} \equiv-1$ (modulo 7). Therefore, if $x=1,2,4$, we are trying to solve $3 x^{5} \equiv 9-5-1 \equiv 2-6 \equiv 3$ (modulo 7). On the other hand $x^{6} \equiv 1$ (modulo 7) so that the solutions to this are $3 \equiv 3 x^{6} \equiv 3 x^{5} x \equiv 3 x$ (modulo 7) or $x \equiv 1$ (modulo 7). On the other hand, if $x=3,5,6$ a similar argument shows that $3 x^{5} \equiv 9-5+1 \equiv 2-4 \equiv 5$ (modulo 7). Multiplying by x yields $3 \equiv 3 x^{6} \equiv 3 x^{5} x \equiv 5 x$ (modulo 7). The solution to this is $x \equiv 2$ (modulo 7) which is not one of $x=3,5,6$ so there is no such solution. Hence we have shown that all the solutions must lie in the set of integers $\{1+7 k \mid k$ an integer $\}$ which give the two residue classes [1], [8] (modulo 14).

