QUESTION

Find all the solutions of each of the following congruences, expressing your answers in terms of congruence classes, [x]:

- (i) $7x \equiv 29 \pmod{64}$,
- (ii) $3x^5 + x^3 + 3001 \equiv 9 \pmod{14}$.

ANSWER

(i) Since 7 is odd, the residue class [7] represent a unit modulo 64. Hence we need only find the unique $[y] \in U_{64}$ such that [x][y] = [1] and then the unique solution to (1) is $[x] = [29y] \in U_{64}$. Since $7^2 = 49 = 3 \times 16 + 1$ we see that y = 16k + 7 for some integer k. Now consider the congruence

$$7 \times (16K + 7) = 1 + 16(7k + 3)$$
 (modulo 64).

If we choose 7k+3 to be a multiple of 4 then we have a suitable solution for y. The smallest convenient value is k=3 and y=55. Hence the only solution is $x \equiv 29 \times 55 \equiv 59$ (modulo 64) of $[x] = [59] \in U_{64}$.

(ii) We begin by finding all the solutions to this congruence modulo 2 and 7. Modulo 2 all x will yield a solution, Modulo 7 there is no solution if $x \equiv 0 \pmod{7}$ since $3001 \equiv 201 \equiv 61 \equiv 5 \pmod{7}$. If x = 1, 2, 4 then $x^3 \equiv 1 \pmod{7}$ while if x = 3, 5, 6 then $x^3 \equiv -1 \pmod{7}$. Therefore, if x = 1, 2, 4, we are trying to solve $3x^5 \equiv 9 - 5 - 1 \equiv 2 - 6 \equiv 3 \pmod{7}$. On the other hand $x^6 \equiv 1 \pmod{7}$ so that the solutions to this are $3 \equiv 3x^6 \equiv 3x^5x \equiv 3x \pmod{7}$ or $x \equiv 1 \pmod{5}$. On the other hand, if x = 3, 5, 6 a similar argument shows that $3x^5 \equiv 9 - 5 + 1 \equiv 2 - 4 \equiv 5 \pmod{7}$. Multiplying by x yields $3 \equiv 3x^6 \equiv 3x^5x \equiv 5x \pmod{7}$. The solution to this is $x \equiv 2 \pmod{7}$ which is not one of x = 3, 5, 6 so there is no such solution.

Hence we have shown that all the solutions must lie in the set of integers $\{1+7k|k \text{ an integer}\}$ which give the two residue classes [1], [8] (modulo 14).