QUESTION

(i) Prove that a positive integer n is composite if and only if it is divisible by some prime p such that $p \leq \sqrt{n}$.
(ii) Design a test for deciding when n is the product of at most two primes, including the possibility that $n=p^{2}$ for some prime p.
(iii) Use your test from (ii) to find all the integers n in the range $600 \leq$ $n \leq 620$ which are either prime or the product of two (not necessarily distinct) primes.
(iv) Use (i) together with your result in (iii) to fine all the primes p in the range $600 \leq p \leq 620$.

ANSWER

(i) If n is composite then $n=p_{1} p_{2} \ldots p_{s}$ where the p_{i} are (not necessarily distinct) primes. If p_{1} is the smallest p_{i} then $p_{1}^{2} \leq p_{1} p_{2} \leq n$ so that $p_{1} \leq \sqrt{n}$. Conversely, a prime divisor in the range $2 \leq p \leq \sqrt{n}$ must be a proper divisor.
(ii) If n is composite then $n=p_{1} p_{2} \ldots p_{s}$ where the p_{i} are (not necessarily distinct) primes and if $s \geq 3$ we must have $p_{1}^{3} \leq p_{1} p_{2} p_{3} \leq n$, where p_{1} is the smallest p_{i}. Therefore if one attempts unsuccessfully to divide n by each of the primes in the range $2 \leq p \leq n^{\frac{1}{3}}$ then n is the product of at most two primes.
(iii) Since $729=9^{3}$ we need only eliminate from the set $600 \leq n \leq 620$ all multiple of $2,3,5$ and 7 . Deleting all multiple of $2,3,5$ leaves

$$
611,613,617,619
$$

and none of these are divisible by 7 since $600 \equiv 5$ (modulo 7) and none of $16,18,22,24$ are divisible by 7 .
(iv) Since $25^{2}=625$ we need only test the divisibility of $611,613,617,619$ by the primes $11,13,17,19,23$ (having already dealt with $2,3,5$ and 7). None are divisible by 11 . However $13 \times 47=611$ so that $613,617,619$ are not divisible by 13 . None of $613,617,619$ is divisible by 17,19 or 23 . Therefore 613,617 and 619 are all prime.

