## QUESTION

Let $p=a^{m}+1$ be a prime, where $a \geq 2$ and $m \geq 1$ are integers. Prove that $a$ must be even and $m=2^{n}$ for some positive integer, $n$.
ANSWER
If $q$ is odd then we have the following identity between polynomials with integral coefficients

$$
t^{q}+1=(t+1)\left(t^{q-1}-t^{q-2}+\ldots-t+1\right)
$$

For our purposes it would be sufficient to know that $t+1$ divides $t^{q}+1$ in $Z[t]$. Now write $m=2^{n} q$ where $q$ is odd. Setting $t=a^{2^{n}}$ yields

$$
t^{q}+1=\left(a^{2^{n}}\right)^{q}+1=a^{2^{n} q}+1=p
$$

Therefore $a^{2^{n}}+1$ divides $p$ in the integers. However, $2 \leq a^{2^{n}}+1$ for all $n$ and $a^{2^{n}}+1=p$ if and only if $q=1$. Hence $p$ has proper divisors unless $n=2^{n}$. Even so, for any $m, p$ would be even if $a$ were odd, so $a$ must be even.

