Question

Using vector methods
(a) find the equation of a circle on $A B$ as diameter,
(b) prove that the altitudes of a triangle are concurrent,
(c) show that the diagonals of a rhombus are orthogonal.

Answer

A, B, R have position vectors $\mathbf{a}, \mathbf{b}, \mathbf{r} \mathrm{R}$ lies on the circle.
Diameter $A B$ iff $R A$ is perpendicular to $R B$.
$(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0$
$\mathbf{r} \cdot \mathbf{r}-\mathbf{r} \cdot(\mathbf{a}+\mathbf{b})+(\mathbf{a} \cdot \mathbf{b})=0$
(b)

$C M$ is perpendicular to $A B$.
$A K$ is perpendicular to $B C$
H is $A K \cap C M$

L if $B H \cap A C$

prove $B L$ is perpendicular to $A C$
Let H be the origin and let the position vectors of $A B C$ be abc.
Then $M=m \mathbf{c}$ for some $\quad m \neq 0$

$$
\begin{array}{rlrl}
K & =k \mathbf{a} & k \neq 0 \\
L & =l \mathbf{b} & l \neq 0
\end{array}
$$

Since $H M$ is perpendicular to $A B$ so $m \mathbf{c} \cdot(\mathbf{b}-\mathbf{a})=0$
therefore $\mathbf{c} \cdot \mathbf{b}=\mathbf{c} \cdot \mathbf{a}$
Since $H K$ is perpendicular to $B C$ so $k \mathbf{a} \cdot(\mathbf{c}-\mathbf{b})=0$
therefore $\mathbf{a} \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{b}$
Thus $\mathbf{c} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{b}=0$ so $l \mathbf{b} \cdot(\mathbf{a}-\mathbf{c})=0$
i.e. $H L$ is perpendicular to $A C$

