Question

(a) Find the equation of a sphere centre \mathbf{c} and radius a.
(b) Show that the equation of the tangent plane at a point \mathbf{d} on the sphere is

$$
\mathbf{r} \cdot \mathbf{d}-\mathbf{c} \cdot(\mathbf{r}+\mathbf{d})+k=0
$$

where k is some scalar to be determined.

Answer

(a) $|r-c|^{2}=a^{2}$ or $(\mathbf{r}-\mathbf{c}) \cdot(\mathbf{r}-\mathbf{a})=a^{2} \quad \mathbf{r} \cdot \mathbf{r}-2 \mathbf{r} \cdot \mathbf{c}=a^{2}-c^{2}$
(b) a normal vector to the plane i sd-c so the equation is $\mathbf{r} \cdot(\mathbf{d}-\mathbf{c})=k$ Thus the equation is $\mathbf{r}(\mathbf{d}-\mathbf{c})=\mathbf{d} \cdot(\mathbf{d}-\mathbf{c})$

$$
\mathbf{r} \cdot \mathbf{d}-\mathbf{c}(\mathbf{r}+\mathbf{d})-\mathbf{d} \cdot \mathbf{d}=0
$$

