Question

(a) Are the two lines $x=3 y+7, y=z-1$ and $x-1=3 y-5=3 z+1$ parallel? (Give a reason.)
(b) At what point does the line $\mathbf{r}=\frac{1}{2} \mathbf{i}+u \mathbf{j}+\mathbf{k} u \epsilon \mathbf{R}$ cut the ellipse $\mathbf{r}=$ $\sin t \mathbf{i}+\cos t \mathbf{j}+2 \sin t \mathbf{k}, t \in \mathbf{R}$
(c) What surface does the equation $\mathbf{r}=4(\cos u \mathbf{i}+\sin u \mathbf{j})+v \mathbf{k}, u, v \epsilon \mathbf{R}$?
(d) Given a geometrical interpretation of the equation $|\mathbf{r}-\mathbf{a}|^{2}=f^{2}$ when \mathbf{a} is a given vector and f is a constant.

Answer

(a) Put the lines is standard form

$$
\frac{x}{1}=\frac{y+\frac{7}{3}}{\frac{1}{3}}=\frac{z+2}{\frac{1}{3}}: \frac{x-1}{1}=\frac{y-\frac{5}{3}}{\frac{1}{3}}=\frac{z+\frac{1}{3}}{\frac{1}{3}}
$$

They are parallel. Both have direction vector $\left(1, \frac{1}{3}, \frac{1}{3}\right)$
(b) $\mathbf{r}=\frac{1}{2} \mathbf{i}+u \mathbf{j}+\mathbf{k}$ meets
$\mathbf{r}=\sin t \mathbf{i}+\cos t \mathbf{j}+2 \sin t \mathbf{k}$
Where $\sin t=\frac{1}{2}$ and $\cos t=u$
So $\cos t= \pm \frac{\sqrt{3}}{2}$
So the line cuts the ellipse at two points $\left(\frac{1}{2}, \pm \frac{\sqrt{3}}{2}, 1\right)$
(c) $\mathbf{r}=4(\cos u \mathbf{i}+\sin u \mathbf{j})+v \mathbf{k}$ represents a cylinder centred on the z-axis with radius 4.
(d) $|\mathbf{r}-\mathbf{a}|^{2}=f^{2}$ represents a sphere, centre a radius $|f|$

