Question

The four points A, B, C, D have position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$.

- (a) Show that the four points A, B, C, D are coplanar if and only if $\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} + \delta \mathbf{d} = \mathbf{0}$ and $\alpha + \beta + \gamma + \delta = 0$ with not all $\alpha, \beta, \gamma, \delta$ zero.
- (b) What conditions must be placed on $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ such that A, B, C, D form
 - (i) a parallelogram
 - (ii) a tetrahedron.
- (c) When d = 0 find the position vector of intersection of
 - (i) the diagonals of the parallelogram ABCD
 - (ii) the lines joining the midpoints of opposite edges of the tetrahedron ABCD.

Answer

(a) ABCD are coplanar if and only if $\vec{AD} = k\vec{AB} + l\vec{AC}$ for some k, l if and only if $\mathbf{d} - \mathbf{a} = k(\mathbf{b} - \mathbf{a}) + l(\mathbf{c} - \mathbf{a})$ if and only if $\mathbf{a}(k + l - 1) + \mathbf{b}(-k) + \mathbf{c}(-l) + \mathbf{d} = 0$ $\Rightarrow \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} + \delta \mathbf{d} = 0$ and $\alpha + \beta + \gamma + \delta = 0$

Conversely if $\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} + \delta \mathbf{d} = 0$ and $\alpha + \beta + \gamma + \delta = 0$ If $\delta = 0$

 $\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = 0$ and $\alpha + \beta + \gamma = 0$ So A, B, C are colinear Thus ABCD are coplanar.

If $\delta \neq 0$

$$\frac{\alpha}{\delta} \mathbf{a} + \frac{\beta}{\delta} \mathbf{b} + \frac{\gamma}{\delta} \mathbf{c} + \mathbf{d} = 0$$
Let $\frac{\beta}{\delta} = -k$ $\frac{\gamma}{\delta} = -l$ then $\frac{\alpha}{\delta} = k + l - 1$

Hence ABCD are coplanar.

(b) ABCD form a parallelogram in that order if $\mathbf{b} - \mathbf{a} = \mathbf{c} - \mathbf{d}$ with none of \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} , equal.

ABCD form a tetrahedron if the are not coplanar.

(c) (i) $A \qquad B$ $P = \frac{1}{2}\mathbf{b}$

 $\begin{array}{c} A \\ V \\ T \\ Q \end{array}$

 $\mathbf{S} = \frac{1}{2}\mathbf{b}$ $t = \frac{1}{2}(\mathbf{a} + \mathbf{c})$ The mid point of ST is

$$\frac{1}{2}\left(\frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{c}\right) = \frac{1}{4}(\mathbf{a} + \mathbf{b} + \mathbf{c})$$

which lies on the other lines by symmetry.