Question

The four points A, B, C, D have position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$.
(a) Show that the four points A, B, C, D are coplanar if and only if $\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}+\delta \mathbf{d}=\mathbf{0}$ and $\alpha+\beta+\gamma+\delta=0$ with not all $\alpha, \beta, \gamma, \delta$ zero.
(b) What conditions must be placed on $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ such that A, B, C, D form
(i) a parallelogram
(ii) a tetrahedron.
(c) When $\mathbf{d}=\mathbf{0}$ find the position vector of intersection of
(i) the diagonals of the parallelogram $A B C D$
(ii) the lines joining the midpoints of opposite edges of the tetrahedron $A B C D$.

Answer

(a) $A B C D$ are coplanar if and only if $\overrightarrow{A D}=k \overrightarrow{A B}+l \overrightarrow{A C}$ for some k, l
if and only if $\mathbf{d}-\mathbf{a}=k(\mathbf{b}-\mathbf{a})+l(\mathbf{c}-\mathbf{a})$
if and only if $\mathbf{a}(k+l-1)+\mathbf{b}(-k)+\mathbf{c}(-l)+\mathbf{d}=0$
$\Rightarrow \alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}+\delta \mathbf{d}=0$ and $\alpha+\beta+\gamma+\delta=0$

Conversely if $\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}+\delta \mathbf{d}=0$ and $\alpha+\beta+\gamma+\delta=0$
If $\delta=0$
$\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}=0$ and $\alpha+\beta+\gamma=0$ So A, B, C are colinear Thus $A B C D$ are coplanar.

If $\delta \neq 0$
$\frac{\alpha}{\delta} \mathbf{a}+\frac{\beta}{\delta} \mathbf{b}+\frac{\gamma}{\delta} \mathbf{c}+\mathbf{d}=0$
Let $\frac{\beta}{\delta}=-k \quad \frac{\gamma}{\delta}=-l$ then $\frac{\alpha}{\delta}=k+l-1$
Hence $A B C D$ are coplanar.
(b) $A B C D$ form a parallelogram in that order if $\mathbf{b}-\mathbf{a}=\mathbf{c}-\mathbf{d}$ with none of $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$, equal.
$A B C D$ form a tetrahedron if the are not coplanar.
(c) (i)

(ii)

$\mathbf{S}=\frac{1}{2} \mathbf{b} \quad t=\frac{1}{2}(\mathbf{a}+\mathbf{c})$
The mid point of $S T$ is

$$
\frac{1}{2}\left(\frac{1}{2} \mathbf{b}+\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{c}\right)=\frac{1}{4}(\mathbf{a}+\mathbf{b}+\mathbf{c})
$$

which lies on the other lines by symmetry.

