Question

Four points in space have coordinates

$$
A(1,1,0) \quad B(3,0,1) \quad C(1,0,2) \quad D(1,1,3)
$$

Find the equations of two parallel planes, of which one contains A and B and the other contains C and D. Deduce the shortest distance between the lines $A B, C D$.

Answer

Parallel planes have the same normal vectors.
Let a be such a normal vector.
Then $\mathbf{a} \cdot \overrightarrow{A B}=0$ and $\mathbf{a} \cdot \overrightarrow{C D}=0$
So $\mathbf{a} \cdot(2,-1,1)=0$ and $\mathbf{a} \cdot(0,1,1)=0$
$\Rightarrow 2 a-b+c=0$ and $b+c=0$
Choose $c=-1 b=1 a=1$
So $\mathbf{a}=(1,1,-1)$ is a normal vector.
The equation of the plane though
$A B: x+y-z=2$
$C D: x+y-z=-1$
So the distance between the planes is $\frac{3}{\sqrt{3}}=\sqrt{3}$

