Question

Four points in space have coordinates

$$A(1,1,0)$$
 $B(3,0,1)$ $C(1,0,2)$ $D(1,1,3)$

Find the equations of two parallel planes, of which one contains A and B and the other contains C and D. Deduce the shortest distance between the lines AB, CD.

Answer

Parallel planes have the same normal vectors. Let **a** be such a normal vector.

Then
$$\mathbf{a} \cdot \overrightarrow{AB} = 0$$
 and $\mathbf{a} \cdot \overrightarrow{CD} = 0$
So $\mathbf{a} \cdot (2, -1, 1) = 0$ and $\mathbf{a} \cdot (0, 1, 1) = 0$
 $\Rightarrow 2a - b + c = 0$ and $b + c = 0$
Choose $c = -1$ $b = 1$ $a = 1$
So $\mathbf{a} = (1, 1, -1)$ is a normal vector.

The equation of the plane though

$$AB : x + y - z = 2$$

 $CD : x + y - z = -1$

So the distance between the planes is $\frac{3}{\sqrt{3}} = \sqrt{3}$