Question

Explain how the equation of a cylinder, of radius a whose axis in the direction of $\hat{\mathbf{n}}$ passes through B, can be written in any of the forms

(i)
$$|(\mathbf{r} - \mathbf{b}) \times \hat{\mathbf{n}}| = a$$
.

(ii)
$$(\mathbf{r} - \mathbf{b}) \times \hat{\mathbf{n}} = a\hat{\mathbf{e}}$$

where $\hat{\mathbf{e}}$ is a unit vector orthogonal to $\hat{\mathbf{n}}$.

(iii)
$$(\mathbf{r} - \mathbf{b}) = a\hat{\mathbf{R}} + t\hat{\mathbf{n}} \quad t \in \mathbf{R}$$

where $\hat{\bf R}$ is a unit vector perpendicular to $\hat{\bf n}$ such that $\hat{\bf R},-\hat{\bf e},\hat{\bf n}$ form a righthanded system.

Answer

 $\mathbf{r} - \mathbf{b}$ is perpendicular to n So |r - b| = a.

So
$$(r-b) \times n = a\hat{e}$$

or
$$|(r-b) \times n| = a$$

Also
$$|\mathbf{r} - \hat{\mathbf{b}}| = a\hat{R} + t\hat{n}$$