Question

Explain how the equation of a cylinder, of radius a whose axis in the direction of $\hat{\mathbf{n}}$ passes through B, can be written in any of the forms
(i) $|(\mathbf{r}-\mathbf{b}) \times \hat{\mathbf{n}}|=a$.
(ii) $(\mathbf{r}-\mathbf{b}) \times \hat{\mathbf{n}}=a \hat{\mathbf{e}}$
where $\hat{\mathbf{e}}$ is a unit vector orthogonal to $\hat{\mathbf{n}}$.
(iii) $(\mathbf{r}-\mathbf{b})=a \hat{\mathbf{R}}+t \hat{\mathbf{n}} \quad t \in \mathbf{R}$
where $\hat{\mathbf{R}}$ is a unit vector perpendicular to $\hat{\mathbf{n}}$ such that $\hat{\mathbf{R}},-\hat{\mathbf{e}}, \hat{\mathbf{n}}$ form a righthanded system.

Answer

$\mathbf{r}-\mathbf{b}$ is perpendicular to n So $|r-b|=a$.
So $(r-b) \times n=a \hat{e}$
or $|(r-b) \times n|=a$
Also $\mid \mathbf{r}-\mathbf{b}=a \hat{R}+t \hat{n}$

