Question

(a) The position vectors of the points P and Q are

$$
\mathbf{a}+3 \mathbf{b}-\mathbf{c} \text { and } 3 \mathbf{a}-\mathbf{c}
$$

Find $\overrightarrow{P Q}$ and $O \vec{M}$, where M is the midpoint of $P Q$, in terms of $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
(b) For $\mathbf{d}=\mathbf{a}+\mathbf{b}$ and $\mathbf{e}=3 \mathbf{a}+\mathbf{b}-\mathbf{4 c}$ determine scalars p and q such that

$$
p \mathbf{d}+q \mathbf{e}=10 \mathbf{a}+10 \mathbf{b}-12 \mathbf{c}
$$

when $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors.

Answer

(a) $\mathbf{p}=\mathbf{a}+3 \mathbf{b}-\mathbf{c} \quad \mathbf{q}=3 \mathbf{a}-\mathbf{c}$
$\overrightarrow{P Q}=\mathbf{q}-\mathbf{p}=2 \mathbf{a}-3 \mathbf{b}$
$O \vec{M}=\frac{1}{2}(\mathbf{p}+\mathbf{q})=2 \mathbf{a}+\frac{3}{2} \mathbf{b}-\mathbf{c}$
(b)

$$
\begin{aligned}
p \mathbf{d}+q \mathbf{e} & =p \mathbf{a}+\mathbf{b}+q(3 \mathbf{a}+\mathbf{b}-\mathbf{4} \mathbf{c}) \\
& =(p+3 q) \mathbf{a}+(p+q) \mathbf{b}-4 q \mathbf{c} \\
& =16 \mathbf{a}+10 \mathbf{b}-12 \mathbf{c}
\end{aligned}
$$

So $q=3, p=7$ as $\mathbf{a}, \mathbf{b}, \mathbf{c}$, are independent.

