Question

Given that \mathbf{a} is an arbitary vector and \mathbf{e} is a fixed unit vector, determine the magnitude and direction of $\mathbf{e} \times(\mathbf{a} \times \mathbf{e})$ and deduce that

$$
\mathbf{a}=(\mathbf{a} \cdot \mathbf{e}) \mathbf{e}+\mathbf{e} \times(\mathbf{a} \times \mathbf{e})
$$

explaining this result.
Consider any three non-collinear vectors a, b, c. By resolving a along b,c and $\mathbf{b} \times \mathbf{c}$ use the above result to prove that

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{a} \cdot \mathbf{c} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}
$$

Answer

So $\mathbf{a} \times \mathbf{e}=(\mathbf{a} \cdot \mathbf{f}) \mathbf{f} \times \mathbf{e}=-(\mathbf{a} \cdot \mathbf{f}) \mathbf{g}$
Thus $\mathbf{e} \times(\mathbf{a} \times \mathbf{e})=-(\mathbf{a} \cdot \mathbf{f}) \mathbf{e} \times \mathbf{g}-(\mathbf{a} \cdot \mathbf{f}) \mathbf{f}$
So $\mathbf{a}=\beta \mathbf{b}+\gamma \mathbf{c}+\delta(\mathbf{b} \times \mathbf{c})$

$$
\begin{aligned}
a \times(b \times c) & =\beta b \times(b \times c)+\gamma(c \times(b \times c)) \\
& =\beta b^{2}[(\hat{b} \cdot c) \hat{b}-\mathbf{c}]+\gamma c^{2}[\mathbf{b}-(\hat{c} \cdot b) \hat{c}] \\
& =\beta(b \cdot c) \mathbf{b}+\gamma(c \cdot c) \mathbf{b}-(\beta(b \cdot b) \mathbf{c}+\gamma(c \cdot b) \mathbf{c})
\end{aligned}
$$

Now

$$
\begin{aligned}
a \cdot c & =\beta(b \cdot c)+\gamma(c \cdot c) \quad \text { since }(b \times c) \cdot c=0 \\
a \cdot b & =\beta(b \cdot b)+\gamma(c \cdot b) \\
\text { So } a \times(b \times c) & =(a \cdot c) \mathbf{b}-(a \cdot b) \mathbf{c}
\end{aligned}
$$

