Question

The cartesian co-ordinates of the points A, B, C are $(-1,1,0),(1,4,6)$, $(3,5,7)$ respectively. Find
(i) The components of $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(ii) The direction cosines of line $B C$.
(iii) The parametric form of the equation $B C$ and give its cartesian form.
(iv) The parametric form of the equation of the plane π containing A, B, C.
(v) The sines of the angle $B A C$.
(vi) The components of the unit vector $\hat{\mathbf{n}}$ perpendicular to the plane π such that $\overrightarrow{A B}, \overrightarrow{A C}, \hat{\mathbf{n}}$ form a right-handed system.
(vii) The 'normal 'form the equation of the plane π and check it agrees with part (iv)
(viii) What is the shortest distance from O to the plane π ?
(xi) The shortest distance between the lines $B C$ and $O A$.
(x) The equation of the line perpendicular to both $B C$ and $O A$.

Answer

$A=(-1,1,0), B=(1,4,6), C=(3,5,7)$
(i) $\overrightarrow{A B}=(2,3,6)$

$$
\overrightarrow{A C}=(4,4,7)
$$

(ii) $\overrightarrow{B C}=(2,1,1) \quad$ So $\hat{B C}=\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
(iii) $\mathbf{r}=(1,4,6)+t(2,1,1)$

$$
\frac{x-1}{2}=\frac{y-4}{1}=\frac{z-6}{1}
$$

(iv) $r=\overrightarrow{O A}+u \overrightarrow{A B}+u \overrightarrow{A C}=(-1,1,0)+u(2,3,6)+v(4,4,7)$
$x=-1+2+4 v \quad y=1+3 u+4 v \quad z=6 u+7 v$
(v) $\cos B A C=\frac{A B \cdot A C}{|A B||A C|}=\frac{62}{63}$
(vi) $\overrightarrow{A B} \times \overrightarrow{A C}=(-3,10,-4) \quad \hat{n}=\left(-\frac{3}{\sqrt{125}}, \frac{10}{\sqrt{125}},-\frac{4}{\sqrt{125}}\right)$
(vii) The equation of π is $-3 x+10 y-4 z=k$
$(-1,1,0) \epsilon \pi$ So $k=13$
Check with (iv) $-3(1+2 u+4 v)+10(1+3 u+4 v)-4(6 u+7 v)=13 \sqrt{ }$
(viii) Shortest distance from \mathbf{p} to $\mathbf{r} \cdot \mathbf{a}=k$ is $\left|\frac{a \cdot p-k}{|a|}\right|$ so when $p=0$

$$
d=\frac{|k|}{|a|}=\frac{13}{|(-3,10,-4)|}=\frac{13}{\sqrt{125}}
$$

$(\mathrm{xi}) \&(\mathrm{x})$
The line $B C$ has parametric equation $\mathbf{r}=(1,4,6)+t(2,1,1) \quad-L$
The line $O A$ has parametric equation $\mathbf{r}=(0,0,0)+t(-1,1,0) \quad-M$
Let P, Q be points on L, M
$\overrightarrow{Q P}=(1+2 k+l, 4+k-l, 6+k)$
We want $\overrightarrow{Q P} \cdot(2,1,1)=0$ and $\overrightarrow{Q P} \cdot(-1,1,0)=0$

$$
\text { So } 2+4 k+2 ;+4+k-l+6+k=0 \quad 6 k+l=-12
$$

$$
-1-2 k-l+4+k-l=0 \quad-k-2 l=-3
$$

So $4 k=-\frac{27}{11} \quad l=\frac{30}{11} \quad P=\left(-\frac{43}{11}, \frac{17}{11}, \frac{39}{11}\right) Q=\left(-\frac{30}{11}, \frac{30}{11}, 0\right)$
$\overrightarrow{Q P}=\frac{13}{11}(-1,-1,3)$ so $|Q P|=\frac{13}{11} \cdot \sqrt{11}$
The equation of $Q P$ is $\mathbf{r}=\left(-\frac{43}{11}, \frac{17}{11}, \frac{39}{11}\right)+t\left(-\frac{30}{11}, \frac{30}{11}, 0\right)$

$$
\frac{x+\frac{30}{11}}{-\frac{33}{11}}=\frac{y-\frac{30}{11}}{-\frac{13}{11}}=\frac{z}{\frac{39}{11}} \text { or } 11 x+30=11 y-30=-\frac{11}{3} z
$$

