Question

The cartesian co-ordinates of the points A, B, C are (-1, 1, 0), (1, 4, 6), (3, 5, 7) respectively. Find

- (i) The components of \vec{AB} and \vec{AC} .
- (ii) The direction cosines of line BC.
- (iii) The parametric form of the equation BC and give its cartesian form.
- (iv) The parametric form of the equation of the plane π containing A, B, C.
- (v) The sines of the angle BAC.
- (vi) The components of the unit vector $\hat{\mathbf{n}}$ perpendicular to the plane π such that \vec{AB} , \vec{AC} , $\hat{\mathbf{n}}$ form a right-handed system.
- (vii) The 'normal 'form the equation of the plane π and check it agrees with part (iv)
- (viii) What is the shortest distance from O to the plane π ?
- (xi) The shortest distance between the lines BC and OA.
- (x) The equation of the line perpendicular to both BC and OA.

Answer

$$A = (-1, 1, 0), B = (1, 4, 6), C = (3, 5, 7)$$

(i)
$$\vec{AB} = (2,3,6)$$

 $\vec{AC} = (4,4,7)$

(ii)
$$\vec{BC} = (2, 1, 1)$$
 So $\hat{BC} = \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$

(iii)
$$\mathbf{r} = (1, 4, 6) + t(2, 1, 1)$$

$$\frac{x-1}{2} = \frac{y-4}{1} = \frac{z-6}{1}$$

(iv)
$$r = \vec{OA} + u\vec{AB} + u\vec{AC} = (-1, 1, 0) + u(2, 3, 6) + v(4, 4, 7)$$

 $x = -1 + 2 + 4v$ $y = 1 + 3u + 4v$ $z = 6u + 7v$

(v)
$$\cos BAC = \frac{AB \cdot AC}{|AB||AC|} = \frac{62}{63}$$

(vi)
$$\vec{AB} \times \vec{AC} = (-3, 10, -4)$$
 $\hat{n} = \left(-\frac{3}{\sqrt{125}}, \frac{10}{\sqrt{125}}, -\frac{4}{\sqrt{125}}\right)$

(vii) The equation of
$$\pi$$
 is $-3x + 10y - 4z = k$
 $(-1, 1, 0)\epsilon\pi$ So $k = 13$
Check with (iv) $-3(1 + 2u + 4v) + 10(1 + 3u + 4v) - 4(6u + 7v) = 13\sqrt{2}$

(viii) Shortest distance from
$$\mathbf{p}$$
 to $\mathbf{r} \cdot \mathbf{a} = k$ is $\left| \frac{a \cdot p - k}{|a|} \right|$ so when $p = 0$
$$d = \frac{|k|}{|a|} = \frac{13}{|(-3, 10, -4)|} = \frac{13}{\sqrt{125}}$$

(xi) & (x)

The line BC has parametric equation $\mathbf{r} = (1,4,6) + t(2,1,1) - L$ The line OA has parametric equation $\mathbf{r} = (0,0,0) + t(-1,1,0) - M$ Let P,Q be points on L,M

$$\vec{QP} = (1 + 2k + l, 4 + k - l, 6 + k)$$

We want $\vec{QP} \cdot (2, 1, 1) = 0$ and $\vec{QP} \cdot (-1, 1, 0) = 0$

So
$$2 + 4k + 2$$
; $+4 + k - l + 6 + k = 0$ $6k + l = -12$
 $-1 - 2k - l + 4 + k - l = 0$ $-k - 2l = -3$

So
$$4k = -\frac{27}{11}$$
 $l = \frac{30}{11}$ $P = \left(-\frac{43}{11}, \frac{17}{11}, \frac{39}{11}\right) Q = \left(-\frac{30}{11}, \frac{30}{11}, 0\right)$

$$\vec{QP} = \frac{13}{11}(-1,-1,3)$$
 so $|QP| = \frac{13}{11} \cdot \sqrt{11}$

The equation of QP is $\mathbf{r} = \left(-\frac{43}{11}, \frac{17}{11}, \frac{39}{11}\right) + t\left(-\frac{30}{11}, \frac{30}{11}, 0\right)$

$$\frac{x + \frac{30}{11}}{-\frac{13}{11}} = \frac{y - \frac{30}{11}}{-\frac{13}{11}} = \frac{z}{\frac{39}{11}} \text{ or } 11x + 30 = 11y - 30 = -\frac{11}{3}z$$