Question

When $k\mathbf{x} + (\mathbf{x} \cdot \mathbf{a})\mathbf{b} = \mathbf{c}$ $(b \neq 0)$ explain why \mathbf{x} is of the form $\frac{1}{k}\mathbf{c} + \alpha\mathbf{b}$, $k \neq 0$ 0 $\alpha \epsilon \mathbf{R}$. Hence solve $k\mathbf{x} + (\mathbf{x} \cdot \mathbf{a})\mathbf{b} = \mathbf{c}$

(i)
$$k + a \cdot b \neq 0$$

(ii)
$$k + a \cdot b = 0$$
 and $\mathbf{a} \cdot \mathbf{c} = 0$ or $\mathbf{a} \cdot \mathbf{c} \neq 0$.

What can you say about possible solutions if k = 0?

Answer

If $k\mathbf{x} + (\mathbf{x} \cdot \mathbf{a})\mathbf{b} = \mathbf{c}$

Then $\mathbf{x} = \frac{1}{k}\mathbf{c} - \frac{1}{k}(\mathbf{x} \cdot \mathbf{a})\mathbf{b} = \frac{1}{k}\mathbf{c} + \alpha\mathbf{b}$ $k \neq 0$ $\alpha \in \mathbf{R}$

So substituting for \mathbf{x} in the original equation gives

$$k\frac{1}{\mathbf{k}}\mathbf{c} + \alpha\mathbf{b} + (\frac{1}{\mathbf{k}}\mathbf{c} + \alpha\mathbf{b} \cdot \mathbf{a})\mathbf{b} = \mathbf{c}$$

$$(k\alpha + \frac{1}{k}\mathbf{c} \cdot \mathbf{a} + \alpha \mathbf{b} \cdot \mathbf{a})\mathbf{b} = \mathbf{0}$$

$$(k\alpha + \frac{1}{k}\mathbf{c} \cdot \mathbf{a} + \alpha \mathbf{b} \cdot \mathbf{a})\mathbf{b} = \mathbf{0}$$

So $\alpha(k + \mathbf{b} \cdot \mathbf{a} = -\frac{1}{k}(c \cdot a) \quad \mathbf{b} \neq \mathbf{0}$

(i) So
$$\alpha = -\frac{1}{k} \frac{\mathbf{c} \cdot \mathbf{a}}{k + \mathbf{b} \cdot \mathbf{a}}$$
 if $k + \mathbf{b} \cdot \mathbf{a} \neq 0$

Thus in this case we have

$$x = \frac{1}{k}\mathbf{c} - \frac{1}{k}\frac{\mathbf{c} \cdot \mathbf{a}}{k + \mathbf{b} \cdot \mathbf{a}}\mathbf{b}$$

(ii) If $k + \mathbf{b} \cdot \mathbf{a} = 0$ and $\mathbf{c} \cdot \mathbf{a} = 0$ then any α will give a solution.

If $k + \mathbf{b} \cdot \mathbf{a} = 0$ and $\mathbf{c} \cdot \mathbf{a} = 0$ then are no solutions.

If k = 0 then the equation reduced to $(x \cdot a)\mathbf{b} = \mathbf{c}$

If $\mathbf{b} = \mathbf{c} = 0$ all \mathbf{x} are solutions.

If only $\mathbf{b} = 0$ then there are no solution.

If $\mathbf{c} = 0$, $\mathbf{b} \neq 0$ then $\mathbf{x} \cdot \mathbf{a} = 0$ so \mathbf{x} and \mathbf{a} are perpendicular.

If $\mathbf{c} \neq 0$, $\mathbf{b} \neq 0$ there are no solutions so **b** and **c** are not parallel.

If **b** and **c** are parallel then $|(x \cdot a)| = \frac{|c|}{|b|}$ i.e. $(x \cdot a) = \pm \frac{|c|}{|b|}$ as **b** and

c have the same or opposite direction. Thus $\mathbf{x} = \pm \frac{|c|}{|b||a|^2} \mathbf{a} + \mathbf{b}$ where **b** and **a** are parallel.