Question

(a) Show that the plane through the point $\mathbf{a}, \mathbf{b}, \mathbf{c}$ has the equation

$$
\mathbf{r} \cdot \mathbf{b} \times \mathbf{c}+\mathbf{r} \cdot \mathbf{c} \times \mathbf{a}+\mathbf{r} \cdot \mathbf{a} \times \mathbf{b}=\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}
$$

(b) Prove that the shortest distance from the point a to the line joining the points \mathbf{b} and \mathbf{c} is given by

$$
\frac{|\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{a}|}{|\mathbf{b}-\mathbf{c}|}
$$

Answer

(a) if the plane passes through the points \mathbf{b}, \mathbf{c} it has a normal vector

$$
\begin{aligned}
(\mathbf{b - a}) \times(\mathbf{c}-\mathbf{a}) & =b \times c-a \times c-b \times a \\
& =b \times c+c \times a+a \times b
\end{aligned}
$$

Thus the equation of the plane is

$$
\mathbf{r}(b \times c+c \times a+a \times b)=k
$$

Now $\mathbf{r}=\mathbf{a}$ lies in the plane and so

$$
k=\mathbf{a}(b \times c+c \times a+a \times b)=a \cdot b \times c
$$

therefore the equation is

$$
\mathbf{r} \cdot(b \times c+c \times a+a \times b)=a \cdot b \times c
$$

(b) If a line has equation $r=\mathbf{s}+t \mathbf{u}$ the shortest distance of \mathbf{p} form the line is $\frac{|(\mathbf{s}-\mathbf{p}) \times \mathbf{u}|}{|u|}$. The equation of the line here is $\mathbf{r}=\mathbf{b}+t(\mathbf{c}-\mathbf{b})$ So the shortest distance of a from the line is

$$
\frac{|(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{b})|}{|\mathbf{c}-\mathbf{b}|}=\frac{|b \times c+c \times a+a \times b|}{|\mathbf{c}-\mathbf{b}|}
$$

