Question

(a) For $\mathbf{c} = 5\mathbf{a} - \mathbf{b}$ and $\mathbf{d} = 3\mathbf{a} + 2\mathbf{b}$ find $\mathbf{c} \times \mathbf{d}$ when

- (i) a and b are unit vectors at an angle $\frac{\pi}{4}$
- (ii) a and b are perpendicular with $|\mathbf{b}| = 2|\mathbf{a}| = 2$.
- (b) Evaluate $|\mathbf{c} \cdot \mathbf{d}|$ when $\mathbf{c} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{d} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$

Answer

(a)
$$\mathbf{c} = 5\mathbf{a} - \mathbf{b}$$
 and $\mathbf{d} = 3\mathbf{a} + 2\mathbf{b}$
 $c \times d = (5\mathbf{a} - \mathbf{b}) \times (3\mathbf{a} + 2\mathbf{b})$

$$= 15\mathbf{a} \times \mathbf{a} + 10\mathbf{a} \times \mathbf{b} - 3\mathbf{b} \times \mathbf{a} - 2\mathbf{b} \times \mathbf{b}$$
$$= 13\mathbf{a} \times \mathbf{b}$$

(i)
$$13\mathbf{a} \times \mathbf{b} = 13|a||b|\sin\frac{\pi}{4}\hat{n} = \frac{13}{\sqrt{2}}\hat{n}$$

(ii)
$$13\mathbf{a} \times \mathbf{b} = 13|a||b|\sin\frac{\pi}{2}\hat{n} = 26\hat{n}$$

(b)
$$|c \times d| = (1, 7, -5)$$
 $|c \times d| = 5\sqrt{3}$