Question

(a) For $\mathbf{c}=5 \mathbf{a}-\mathbf{b}$ and $\mathbf{d}=3 \mathbf{a}+2 \mathbf{b}$ find $\mathbf{c} \times \mathbf{d}$ when
(i) \mathbf{a} and \mathbf{b} are unit vectors at an angle $\frac{\pi}{4}$
(ii) \mathbf{a} and \mathbf{b} are perpendicular with $|\mathbf{b}|=2|\mathbf{a}|=2$.
(b) Evaluate $|\mathbf{c} \cdot \mathbf{d}|$ when $\mathbf{c}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{d}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$

Answer

(a) $\mathbf{c}=5 \mathbf{a}-\mathbf{b}$ and $\mathbf{d}=3 \mathbf{a}+2 \mathbf{b}$
$c \times d=(5 \mathbf{a}-\mathbf{b}) \times(3 \mathbf{a}+2 \mathbf{b})$
$=15 \mathbf{a} \times \mathbf{a}+10 \mathbf{a} \times \mathbf{b}-3 \mathbf{b} \times \mathbf{a}-2 \mathbf{b} \times \mathbf{b}$
$=13 \mathbf{a} \times \mathbf{b}$
(i) $13 \mathbf{a} \times \mathbf{b}=13|a||b| \sin \frac{\pi}{4} \hat{n}=\frac{13}{\sqrt{2}} \hat{n}$
(ii) $13 \mathbf{a} \times \mathbf{b}=13|a||b| \sin \frac{\pi}{2} \hat{n}=26 \hat{n}$
(b) $|c \times d|=(1,7,-5) \quad|c \times d|=5 \sqrt{3}$

