Question

The three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are linearly independent.
(a) What does the equation

$$
\mathbf{r}=(1+2 u-v) \mathbf{a}+(3 v-6 u) \mathbf{b}+\mathbf{c}
$$

$u, v \in \mathbf{R}$ represent?
(b) When $\mathbf{p}=\mathbf{a}+2 \mathbf{c}, \mathbf{q}=2 \mathbf{a}-\mathbf{b}+3 \mathbf{c}, \mathbf{s}=2 \mathbf{b}-3 \mathbf{a}-4 \mathbf{c}$ are $\mathbf{p}, \mathbf{q}, \mathbf{s}$ linearly independent? If $\mathbf{p}, \mathbf{q}, \mathbf{s}$ are position vectors of the points P, Q, S are P, Q, S colinear?
(c) Find the point(s) of intersection of the line

$$
\mathbf{r}=(1+t) \mathbf{a}+(t-2) \mathbf{b}+(2-t) \mathbf{c} \quad t \epsilon \mathbf{R}
$$

with
(i) The lines
(a) $\mathbf{r}=(2+u) \mathbf{a}+(u-1) \mathbf{b}+(2 u+1) \mathbf{c}$
$u \epsilon \mathbf{R}$
(b) $\mathbf{r}=(1+u)(2 \mathbf{a}+\mathbf{b})+(3+u) \mathbf{c}$
$u \in \mathbf{R}$
(c) $\mathbf{r}=u \mathbf{a}+(u-3) \mathbf{b}+(3-u) \mathbf{c}$
$u \in \mathbf{R}$
(ii) The planes
(a) $\mathbf{r}=\mathbf{a}+u \mathbf{b}+v \mathbf{c}$
$u, v \in \mathbf{R}$
(b) $\mathbf{r}=(1+u) \mathbf{a}+(u-2) \mathbf{b}+v \mathbf{c}$
$u, v \in \mathbf{R}$
(c) $\mathbf{r}=(1+v) \mathbf{a}+(u-2) \mathbf{b}+(3-v) \mathbf{c}$
$u, v \in \mathbf{R}$

Answer

(a)

$$
\begin{aligned}
b f r & =(1+2 u-v) \mathbf{a}+(3 v-6 v) \mathbf{b}+\mathbf{c} \\
& =\mathbf{a}+\mathbf{c}+u(2 \mathbf{a}-6 \mathbf{b})+v(3 \mathbf{b}-\mathbf{a}) \\
& =\mathbf{a}+\mathbf{c}+(2 u-v)(\mathbf{a}-3 \mathbf{b})
\end{aligned}
$$

This is a line through $\mathbf{a}+\mathbf{c}$ with direction vector $\mathbf{a}-3 \mathbf{b}$
(b)

$$
\begin{gathered}
\mathbf{p}=\mathbf{a}+2 \mathbf{c} \quad \mathbf{q}=2 \mathbf{a}-\mathbf{b}+3 \mathbf{c} \quad \mathbf{s}=2 \mathbf{b}-3 \mathbf{a}-4 \mathbf{c} \\
\alpha \mathbf{p}+\beta \mathbf{q}+\gamma \mathbf{s}=\mathbf{a}(\alpha+2 \beta-3 \gamma)+\mathbf{b}(-\beta+2 \gamma)+\mathbf{c}(2 \alpha+3 \beta-4 \gamma)=\mathbf{0}
\end{gathered}
$$

if and only if

$$
\left.\begin{array}{rl}
\alpha+2 \beta-3 \gamma & =0 \\
-\beta+2 \gamma & =0 \\
2 \alpha+3 \beta-4 \gamma & =0
\end{array}\right\} \text { Solution }(-\gamma, 2 \gamma, \gamma)
$$

So $\mathbf{p}, \mathbf{q}, \mathbf{s}$, are not linearly independent.
$\alpha+\beta+\gamma=2 \gamma=0$ iff $\alpha=\beta=\gamma=0$. So $P Q R$ are not collinear.
(c) $\mathbf{r}=(1+t) \mathbf{a}+(t-2) \mathbf{b}+(2-t) \mathbf{c}$
(in standard form $\mathbf{r}=\mathbf{a}-2 \mathbf{b}+2 \mathbf{c}+t(\mathbf{a}+\mathbf{b}-\mathbf{c})$)
(i)
(a) $\mathbf{r}=(1+t) \mathbf{a}+(t-2) \mathbf{b}+(2-t) \mathbf{c}$
$\mathbf{r}=(2+u) \mathbf{a}+(u-1) \mathbf{b}+(2 u+1) \mathbf{c}$
These lines meet where
$1+t=2+u \quad t-2=u-12-t=2 u+1$

$$
t=1+u \quad t=1+u \quad t=1-2 u
$$

So we require $1+u=1+2 u v=0$ so $t=1$
Thus the lines meet at $\mathbf{r}=2 \mathbf{a}-\mathbf{b}+\mathbf{c}$
(b) $\mathbf{r}=(1+t) \mathbf{a}+(t-2) \mathbf{b}+(2-t) \mathbf{c}$
$\mathbf{r}=(1+u)(2 \mathbf{a}+\mathbf{b})+(3+u) \mathbf{c}$
These meet where

$$
(1+t)=(2+2 u) \underbrace{(t-2)=(1+u) \quad(2-t)=3+u}_{1+u=-3-3 u \Rightarrow u=-2, t=1}
$$

which doesn't fit 1st equation.
Therefore the lines do not meet.
(c) $\mathbf{r}=(1+t) \mathbf{a}+(t-2) \mathbf{b}+(2-t) \mathbf{c}$
$\mathbf{r}=u \mathbf{a}+(u-3) \mathbf{b}+(3-u) \mathbf{c}$
$u=1+t$ so the lines are identical.
(ii) (a) $\mathbf{r}=(1+t) \mathbf{a}+(t-2) \mathbf{b}+(2-t) \mathbf{c}$
$\mathbf{r}=\mathbf{a}+u \mathbf{b}+v \mathbf{c}$
$1+t=1, \quad t-2=u, \quad 2-t=v$

$$
t=0, u=-2, v=2
$$

So $\mathbf{r}=\mathbf{a}-2 \mathbf{2}+2 \mathbf{c}$ is the point of intersection.
(b) $\mathbf{r}=(1+t) \mathbf{a}+(t-2) \mathbf{b}+(2-t) \mathbf{c}$
$\mathbf{r}=(1+u) \mathbf{a}+(u-2) \mathbf{b}+v \mathbf{c}$
$t=u, v=-t+2$ So the line lies in the plane.
(c) $\mathbf{r}=(1+t) \mathbf{a}+(t-2) \mathbf{b}+(2-t) \mathbf{c}$
$\mathbf{r}=(1+v) \mathbf{a}+(u-2) \mathbf{b}+(3-v) \mathbf{c}$
$t=v, t-u t=v-1$
So the line does not meet the plane. It is parallel to the plane.

