Question

(a) If $\mathbf{x} \cdot \mathbf{x}=\alpha^{2}$ show that the length of \mathbf{x} is fixed but its direction is arbitrary. Hence solve for \mathbf{x}

$$
a \mathbf{x} \cdot \mathbf{x}+2 \mathbf{b} \cdot \mathbf{x}+c=0
$$

(b) Eliminate \mathbf{y} from the equations

$$
\begin{aligned}
p \mathbf{x}-\mathbf{a} \times \mathbf{y} & =\mathbf{c} \\
\mathbf{b} \times \mathbf{x}+\mathbf{y} & =\mathbf{0}
\end{aligned}
$$

Hence solve that this pair of simultaneous equations for \mathbf{x} and \mathbf{y} when $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are linearly independent, considering the 3 cases $p \neq \mathbf{a} \cdot \mathbf{b}$, $p=\mathbf{a} \cdot \mathbf{b}, p=0$.

Answer

(a) If $x \cdot x=\alpha^{2}$ then $|x|=|\alpha|$ so the magnitude of x is fixed.

$$
\begin{aligned}
a\left(x \cdot x+\frac{2}{a} b \cdot x+\frac{c}{a}\right) & =0 \\
\left(\mathbf{x}+\frac{b}{a}\right) \cdot\left(\mathbf{x}+\frac{b}{a}\right) & =\frac{b^{2}-a c}{a^{2}}
\end{aligned}
$$

So

$$
x=\frac{1}{a} \mathbf{b}+\sqrt{\frac{b^{2}-a c}{a^{2}}} \hat{e}
$$

where \hat{e} is an arbitrary unit vector provided $b^{2} \geq a c$
(b)

$$
\left.\begin{array}{rl}
p \mathbf{x}-\mathbf{a} \times \mathbf{y} & =\mathbf{c} \\
\mathbf{b} \times \mathbf{x}+\mathbf{y} & =\mathbf{0} \\
\text { So } \quad p \mathbf{x}+\mathbf{a} \times(\mathbf{b} \times \mathbf{x}) & =\mathbf{c} \\
& p \mathbf{x}+(a \cdot x) \mathbf{b}-(a \cdot b) \mathbf{x}
\end{array}\right) \mathbf{c}, \quad\binom{\text { or }}{\text { or } \quad(p-a \cdot b) \mathbf{x}+(a \cdot x) \mathbf{b}}
$$

This is the same equation as question 15 .

If $p-\mathbf{a} \cdot \mathbf{b} \neq 0$ then $\mathbf{x}=\frac{c-(a \cdot x) \mathbf{b}}{p-a \cdot b}$
Take the scalar product of $\left({ }^{*}\right)$ with \mathbf{b} to find $(a \cdot x)=\frac{a \cdot c}{p} p \neq 0$
So

$$
x=\frac{\mathbf{c}-\frac{a \cdot c}{p} \mathbf{b}}{p-\mathbf{a} \cdot \mathbf{b}}
$$

If $p-\mathbf{a} \cdot \mathbf{b}=0$ then $\left(^{*}\right)$ gives $(a \cdot x) \mathbf{b}=\mathbf{c}$ and there are no solutions since \mathbf{b} and \mathbf{c} are map.

If $p=0$ then the scalar of $\left(^{*}\right)$ with a gives $\mathbf{a} \cdot \mathbf{c}=0$ so there are solutions only if $\mathbf{a} \cdot \mathbf{c}=0$, then we have

$$
\mathbf{x}=\frac{c-(a \cdot x) \mathbf{b}}{-a \cdot b} \quad \text { if } a \cdot b \neq 0 \quad b f x=-\frac{c}{a \cdot b}+\alpha \mathbf{b} \quad \alpha \in \mathbf{R}
$$

If $p=0$ and $a \cdot b=0$ then $(a \cdot x) \mathbf{b}=\mathbf{c}$ then there are no solutions.

We then find \mathbf{y} from $\mathbf{y}=-\mathbf{b} \times \mathbf{x}$

