Question

(a) If $\mathbf{x} \cdot \mathbf{x} = \alpha^2$ show that the length of \mathbf{x} is fixed but its direction is arbitrary. Hence solve for \mathbf{x}

$$a\mathbf{x} \cdot \mathbf{x} + 2\mathbf{b} \cdot \mathbf{x} + c = 0$$

(b) Eliminate y from the equations

$$p\mathbf{x} - \mathbf{a} \times \mathbf{y} = \mathbf{c}$$

 $\mathbf{b} \times \mathbf{x} + \mathbf{y} = \mathbf{0}$

Hence solve that this pair of simultaneous equations for \mathbf{x} and \mathbf{y} when $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are linearly independent, considering the 3 cases $p \neq \mathbf{a} \cdot \mathbf{b}$, $p = \mathbf{a} \cdot \mathbf{b}$, p = 0.

Answer

(a) If $x \cdot x = \alpha^2$ then $|x| = |\alpha|$ so the magnitude of x is fixed.

$$\begin{array}{rcl} a\left(x\cdot x+\frac{2}{a}b\cdot x+\frac{c}{a}\right) & = & 0 \\ \left(\mathbf{x}+\frac{b}{a}\right)\cdot\left(\mathbf{x}+\frac{b}{a}\right) & = & \frac{b^2-ac}{a^2} \end{array}$$

So

$$x = \frac{1}{a}\mathbf{b} + \sqrt{\frac{b^2 - ac}{a^2}}\hat{e}$$

where \hat{e} is an arbitrary unit vector provided $b^2 \geq ac$

(b)

$$p\mathbf{x} - \mathbf{a} \times \mathbf{y} = \mathbf{c}$$

$$\mathbf{b} \times \mathbf{x} + \mathbf{y} = \mathbf{0}$$
So
$$p\mathbf{x} + \mathbf{a} \times (\mathbf{b} \times \mathbf{x}) = \mathbf{c}$$

$$p\mathbf{x} + (a \cdot x)\mathbf{b} - (a \cdot b)\mathbf{x} = \mathbf{c}$$
or
$$(p - a \cdot b)\mathbf{x} + (a \cdot x)\mathbf{b} = \mathbf{c} \quad (*)$$

This is the same equation as question 15.

If
$$p - \mathbf{a} \cdot \mathbf{b} \neq 0$$
 then $\mathbf{x} = \frac{c - (a \cdot x)\mathbf{b}}{p - a \cdot b}$

Take the scalar product of (*) with **b** to find $(a \cdot x) = \frac{a \cdot c}{p}$ $p \neq 0$

So

$$x = \frac{\mathbf{c} - \frac{\mathbf{a} \cdot \mathbf{c}}{p} \mathbf{b}}{p - \mathbf{a} \cdot \mathbf{b}}$$

If $p - \mathbf{a} \cdot \mathbf{b} = 0$ then (*) gives $(a \cdot x)\mathbf{b} = \mathbf{c}$ and there are no solutions since **b** and **c** are map.

If p=0 then the scalar of (*) with **a** gives $\mathbf{a} \cdot \mathbf{c} = 0$ so there are solutions only if $\mathbf{a} \cdot \mathbf{c} = 0$, then we have

$$\mathbf{x} = \frac{c - (a \cdot x)\mathbf{b}}{-a \cdot b}$$
 if $a \cdot b \neq 0$ $bfx = -\frac{c}{a \cdot b} + \alpha \mathbf{b}$ $\alpha \epsilon \mathbf{R}$

If p = 0 and $a \cdot b = 0$ then $(a \cdot x)\mathbf{b} = \mathbf{c}$ then there are no solutions.

We then find \mathbf{y} from $\mathbf{y} = -\mathbf{b} \times \mathbf{x}$