QUESTION

Obtain at least one solution of the form

$$y = x^{\sigma} \sum_{n=0}^{\infty} a_n x^n$$

for each of the following differential equations. Where possible, obtain a second independent solution of the same form, or comment on why it is not possible to do so.

$$x^2y'' + xy' + (x^2 - p^2)y = 0$$

Discuss the cases (a) 2p not an integer, (b) 2p an integer but p not an integer and (c) p an integer, separately.

ANSWER.

 $x^2y'' + xy' + (x^2 - p^2)y = 0$ This is the Bessel equation. 0 is a regular singular

$$\sum_{n=0}^{\infty} a_n \{ \left[(\sigma + n) (\sigma + n - 1) + (\sigma + n) - p^2 \right] x^{\sigma + n} + x^{\sigma + n + 2} \} = 0$$
 Factorizing

$$\sum_{n=0}^{\infty} \{a_n \left[(\sigma + n)^2 - p^2 \right] x^{\sigma+n} + x^{\sigma+n+2} \} = 0$$

$$a_0 (\sigma^2 - p^2) x^{\sigma} + a_1 [(\sigma + 1)^2 - p^2] x^{\sigma+1}$$

$$+\sum_{n=2}^{\infty} x^{\sigma+n} \{ a_n \left[(\sigma+n)^2 - p^2 \right] + a_{n-2} \} = 0$$

 $a_0 \neq 0$ gives $\sigma^2 - p^2 = 0 \Rightarrow \sigma = \pm p \Rightarrow a_1 = 0$ (If we assume $a_0 = 0$ and $a_1 \neq 0$, we get the same solution, only written differently. As a convention,

we fix
$$\sigma$$
 by assuming $a_0 \neq 0$)
$$a_n = -\frac{1}{(n \pm p)^2 - p^2} a_{n-2} = -\frac{1}{n(n \pm 2p)} a_{n-2}$$

The difference between the two values of σ is p - (-p) = 2p.

- (a) 2p not an integer: we get two independent Frobenius series solutions.
- (b) 2p integer but p not an integer: Assume p>0, Then for $\sigma=p$ we obtain a Frobenius solution, but for $\sigma = -p$ we find $a_{2p} = -\frac{x}{1}2p(2p-2p)a_{2p-2}$ dividing by zero, so this second Frobenius solution does not exist.
- (c) p an integer: We get only one series solution, which is now a power series.

1