QUESTION

Obtain at least one solution of the form

$$
y=x^{\sigma} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

for each of the following differential equations. Where possible, obtain a second independent solution of the same form, or comment on why it is not possible to do so.
$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$
Discuss the cases (a) $2 p$ not an integer, (b) $2 p$ an integer but p not an integer and (c) p an integer, separately.

ANSWER
$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$ This is the Bessel equation. 0 is a regular singular point.
$\sum_{n=0}^{\infty} a_{n}\left\{\left[(\sigma+n)(\sigma+n-1)+(\sigma+n)-p^{2}\right] x^{\sigma+n}+x^{\sigma+n+2}\right\}=0$
Factorizing
$\sum_{n=0}^{\infty}\left\{a_{n}\left[(\sigma+n)^{2}-p^{2}\right] x^{\sigma+n}+x^{\sigma+n+2}\right\}=0$
Reordering
$a_{0}\left(\sigma^{2}-p^{2}\right) x^{\sigma}+a_{1}\left[(\sigma+1)^{2}-p^{2}\right] x^{\sigma+1}$
$+\sum_{n=2}^{\infty} x^{\sigma+n}\left\{a_{n}\left[(\sigma+n)^{2}-p^{2}\right]+a_{n-2}\right\}=0$
$a_{0} \neq 0$ gives $\sigma^{2}-p^{2}=0 \Rightarrow \sigma= \pm p \Rightarrow a_{1}=0$ (If we assume $a_{0}=0$ and $a_{1} \neq 0$, we get the same solution, only written differently. As a convention, we fix σ by assuming $a_{0} \neq 0$)
$a_{n}=-\frac{1}{(n \pm p)^{2}-p^{2}} a_{n-2}=-\frac{1}{n(n \pm 2 p)} a_{n-2}$
Discussion:
The difference between the two values of σ is $p-(-p)=2 p$.
(a) $2 p$ not an integer: we get two independent Frobenius series solutions.
(b) $2 p$ integer but p not an integer: Assume $\mathrm{p}>0$, Then for $\sigma=p$ we obtain a Frobenius solution, but for $\sigma=-p$ we find $a_{2 p}=-\frac{x}{1} 2 p(2 p-2 p) a_{2 p-2}$ dividing by zero, so this second Frobenius solution does not exist.
(c) p an integer: We get only one series solution, which is now a power series.

