
QUESTION
Obtain at least one solution of the form

y = xσ
∞
∑

n=0

anx
n

for each of the following differential equations. Where possible, obtain a
second independent solution of the same form, or comment on why it is not
possible to do so.
4xy′′ + 2y′ + y = 0

ANSWER
4xy′′ + 2y + y = 0, or y′′ + 1

2x
y′ + 1

4x
y = 0

y=0 is a regular singular point, so we need a Frobenius series:
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∞
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Substitute:
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Now reorder by powers of x.
Let n = m+ 1 in the first term and n = m in the second.
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σ+m−1 = 0

m = −1 gives us σ
(

σ − 1
2

)

= 0⇒ σ = 0 or σ = 1
2
.

m = 0 gives am+1 = −
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Case σ = 0 : am+1 = −
1
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am The solution is am = (−1)m
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Case σ = 1
2
: am+1 = −

1
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The general solution is obtained by adding the two cases:
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