Question

Find (a) $\lim _{n \rightarrow \infty}\left(\begin{array}{rr}4.5 & 8 \\ -2 & -3.5\end{array}\right)^{n}\binom{6}{9}, \quad$ (b) $\lim _{n \rightarrow \infty}\left(\begin{array}{rr}\frac{3}{2} & 1 \\ -\frac{1}{2} & 0\end{array}\right)^{n}\binom{6}{9}$

Answer

(a) $A=\left(\begin{array}{rr}4.5 & 8 \\ -2 & -3.5\end{array}\right)$ has eigenvalues: $(\lambda-4.5)(\lambda+3.5)+16=0$
i.e. $\lambda^{2}-\lambda=0.25=0$ i.e. $\lambda=\frac{1}{2}, \frac{1}{2}$.

These are inside the unit circle, so the origin is a sink. This means $A^{n} v \rightarrow(0,0)$ for every vector $v \in \mathbf{R}^{2}$ (not just (6,9)).
(b) $A=\left(\begin{array}{rr}\frac{3}{2} & 1 \\ -\frac{1}{2} & 0\end{array}\right)$ has eigenvalues: $\left(\lambda-\frac{3}{2}\right) \lambda+\frac{1}{2}=0$
i.e. $\lambda^{2}-\frac{3}{2} \lambda+\frac{1}{2}=0:(\lambda-1)\left(\lambda-\frac{1}{2}\right)=0$. Hence $\lambda=1, \frac{1}{2}$.

This means $(0,0)$ is a non-hyperbolic fixed point.
Eigenvectors:

$$
\begin{aligned}
& \lambda=1 \quad\left(\begin{array}{rr}
\frac{1}{2} & 1 \\
-\frac{1}{2} & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0}: \quad\binom{x}{y}=\binom{2}{-1}, \text { say. } \\
& \lambda=\frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
-\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\binom{x}{y}=\binom{0}{0}: \quad\binom{x}{y}=\binom{1}{-1}, \text { say } .
\end{aligned}
$$

Thus under the action of A, every point on the line $y=-\frac{1}{2} x$ remains fixed (there is a whole line of fixed points), while every vector in the direction $y=-x$ is shrunk by a factor $\frac{1}{2}$. Hence the point $(6,9)$ will be attracted to the point where the line through $(6,9)$ with slope -1 meets the line $y=\frac{-x}{2}$. Easy to check this point is $(30,-15)$.

