Question

Let $f: \mathbf{R} \longrightarrow \mathbf{R}$ and $g: \mathbf{R} \longrightarrow \mathbf{R}$ be two diffeomorphisms, each having the origin as an attracting fixed point (no flips) with basin of attraction the whole of \mathbf{R} . Choose some p > 0 and let I = [f(p), p], J = [g(p), p]. Construct $h: I \longrightarrow J$ of the form h(x) = ax + b so that h(p) = p and h(f(p)) = g(p). Use this to construct a conjugacy between f, g on \mathbf{R} .

Answer

Note: This requires f, g to be invertible.

Consider the intervals $f(I) = [f^2(p), f(p)]$ and $g(J) = [g^2(p), g(p)]$.

Define $h_1: f(I) \longrightarrow g(J)$ by $h_1(x) = g \cdot h \cdot f^{-1}(x)$ (if a conjugacy exists then on f(I) it <u>has</u> to be this.) . Then if x = f(u) (say) where $u \in I$ then $h_1 f(u) = gh(u)$, i.e. $h_1 \circ f = g \circ h : I \longrightarrow g(J)$.

Next define $h_2: f^2(I) \longrightarrow g^2(J)$ by $h_2(x) = g \cdot h_1 \cdot f^{-1}(x)$: this gives $h_2 \circ f = h \circ h_1: f(I) \longrightarrow g^2(J)$. Continue indefinitely, defining $h_n: f^n(I) \longrightarrow g^n(J)$ by $h_n(x) = g \cdot h_{n-1}f^{-1}(x)$. Likewise define $h_{-1}: f^{-1}(I) \longrightarrow g^n(J)$ by $h_{-1}(x) = g^{-1}hf(x)$, so $gh_{-1} = hf: f^{-1}(I) \longrightarrow J_1$ and inductively define $h_{-n}: f^{-n}(I) \longrightarrow g^{-n}(J)$ by $h_{-n}(x): g^{-1} \cdot h_{-n+1}f^{-1}(x) \ (n = 1, 2, 3, \cdots)$. Then (writing $h = h_0$) the family of maps $\{h_m\}_{m \in \mathbb{Z}}$ defines a continuous (both ways) bijection $\mathbb{R}^+ \longrightarrow \mathbb{R}^+$ conjugating f, g. Do likewise for \mathbb{R}^- . Finally, map 0 to 0.