## Question

Let $f: \mathbf{R} \longrightarrow \mathbf{R}$ and $g: \mathbf{R} \longrightarrow \mathbf{R}$ be two diffeomorphisms, each having the origin as an attracting fixed point (no flips) with basin of attraction the whole of $\mathbf{R}$. Choose some $p>0$ and let $I=[f(p), p], J=[g(p), p]$. Construct $h: I \longrightarrow J$ of the form $h(x)=a x+b$ so that $h(p)=p$ and $h(f(p))=g(p)$. Use this to construct a conjugacy between $f, g$ on $\mathbf{R}$.

## Answer



Note: This requires $f, g$ to be invertible.
Consider the intervals $f(I)=\left[f^{2}(p), f(p)\right]$ and $g(J)=\left[g^{2}(p), g(p)\right]$.
Define $h_{1}: f(I) \longrightarrow g(J)$ by $h_{1}(x)=g \cdot h \cdot f^{-1}(x)$ (if a conjugacy exists then on $f(I)$ it has to be this.). Then if $x=f(u)$ (say) where $u \in I$ then $h_{1} f(u)=g h(u)$, i.e. $h_{1} \circ f=g \circ h: I \longrightarrow g(J)$.
Next define $h_{2}: f^{2}(I) \longrightarrow g^{2}(J)$ by $h_{2}(x)=g \cdot h_{1} \cdot f^{-1}(x)$ : this gives $h_{2} \circ f=$ $h \circ h_{1}: f(I) \longrightarrow g^{2}(J)$. Continue indefinitely, defining $h_{n}: f^{n}(I) \longrightarrow g^{n}(J)$ by $h_{n}(x)=g \cdot h_{n-1} f^{-1}(x)$. Likewise define $h_{-1}: f^{-1}(I) \longrightarrow g^{n}(J)$ by $h_{-1}(x)=g^{-1} h f(x)$, so $g h_{-1}=h f: f^{-1}(I) \longrightarrow J_{1}$ and inductively define $h_{-n}: f^{-n}(I) \longrightarrow g^{-n}(J)$ by $h_{-n}(x): g^{-1} \cdot h_{-n+1} f^{-1}(x)(n=1,2,3, \cdots)$. Then (writing $h=h_{0}$ ) the family of maps $\left\{h_{m}\right\}_{m \in \mathbf{Z}}$ defines a continuous (both ways) bijection $\mathbf{R}^{+} \longrightarrow \mathbf{R}^{+}$conjugating $f, g$. Do likewise for $\mathbf{R}^{-}$. Finally, map 0 to 0.

