Question

Consider the Henon map with b = 0.4. Verify the following facts:

- (i) For -0.09 < a < 0.27 there is one sink fixed point and one saddle fixed point.
- (ii) As a increases through 0.27, the largest magnitude eigenvalue of the first fixed point passes through -1, and an attracting 2-cycle is created.
- (iii) This 2-cycle ceases to be attracting as a increases through 0.85.

Answer

(i) Fixed points $(x, y \text{ given by } x^2 + (1-b)x - a = 0, y = x$. Eigenvalues of Df(y) given by $\lambda^2 + 2x\lambda - 6 = 0, \lambda = -x \pm \sqrt{x^2 + b}$: real as b >

As a increases from -0.09 to 0.27 the x-coordinate of the fixed points spread out from -0.3 (repeated) to x = -0.9, +0.3.

For x < -0.3 we have $x^2 + b > 0.49$ so $+\sqrt{x^2 + b} > 0.7$ and therefore on eigenvalue $\lambda > 1$: <u>saddle</u> (the other eigenvalue stays inside the unit circle).

For -0.3 < x < 0.3 we have $x^2 + b < 0.49$ so both $|\lambda| < 1$: sink.

(ii) As x increases through 0.3 (that is a increases through 0.27) we see $\lambda = -x - \sqrt{x^2 + b}$ decreases through— We expect this to lead to creation of a 2-cycle, but check:

2-cycle is created — as a increases through

$$\frac{3}{4}(1-b)^2 = \frac{3}{4}(0.6)^2 = 0.27.\sqrt{}$$

Moreover this occurs at point (x,x) where $x = \frac{1}{2}(1-b) = 0.3.\sqrt{2}$

The eigenvalues of Df^2 at a per-2 point are $\lambda=t\pm\sqrt{t^2-b^2}$ where (with b=0.4) we have t=1.12-2a. For a just > 0.27 we have t<0.58 and $t^2-b^2<0.1764$ so $+\sqrt{t^2-b^2}<0.42$: thus $\lambda=t+\sqrt{t^2-b^2}$ just;1, so the 2-cycle is attracting.

(iii) As a increases though 0.85 we see that:

t decreases through -0.58 $\,$

 $\sqrt{t^2-b^2}$ increases through 0.42.

So the eigenvalue $\lambda=t-\sqrt{t^2-b^2}$ decreases through -1; 2-cycle no longer attracting.

1