Question

Consider the Henon map with $b=0.4$. Verify the following facts:
(i) For $-0.09<a<0.27$ there is one sink fixed point and one saddle fixed point.
(ii) As a increases through 0.27 , the largest magnitude eigenvalue of the first fixed point passes through -1 , and an attracting 2-cycle is created.
(iii) This 2-cycle ceases to be attracting as a increases through 0.85 .

Answer

(i) Fixed points $\left(x, y\right.$ given by $x^{2}+(1-b) x-a=0, y=x$. Eigenvalues of $D f(y)$ given by $\lambda^{2}+2 x \lambda-6=0, \lambda=-x \pm \sqrt{x^{2}+b}$: real as $b>$
As a increases from -0.09 to 0.27 the x-coordinate of the fixed points spread out from -0.3 (repeated) to $x=-0.9,+0.3$.
For $x<-0.3$ we have $x^{2}+b>0.49$ so $+\sqrt{x^{2}+b}>0.7$ and therefore on eigenvalue $\lambda>1$: saddle (the other eigenvalue stays inside the unit circle).
For $-0.3<x<0.3$ we have $x^{2}+b<0.49$ so both $|\lambda|<1$: sink.
(ii) As x increases through 0.3 (that is a increases through 0.27) we see $\lambda=-x-\sqrt{x^{2}+b}$ decreases through- We expect this to lead to creation of a 2 -cycle, but check:
2-cycle is created as a increases through
$\frac{3}{4}(1-b)^{2}=\frac{3}{4}(0.6)^{2}=0.27 \cdot \sqrt{ }$
Moreover this occurs at point (x, x) where $x=\frac{1}{2}(1-b)=0.3 \cdot \sqrt{ }$
The eigenvalues of $D f^{2}$ at a per-2 point are $\lambda=t \pm \sqrt{t^{2}-b^{2}}$ where (with $b=0.4$) we have $t=1.12-2 a$. For a just >0.27 we have $t<0.58$ and $t^{2}-b^{2}<0.1764$ so $+\sqrt{t^{2}-b^{2}}<0.42$: thus $\lambda=t+\sqrt{t^{2}-b^{2}}$ just ${ }^{1} 1$, so the 2 -cycle is attracting.
(iii) As a increases thourgh 0.85 we see that:
t decreases through -0.58
$\sqrt{t^{2}-b^{2}}$ increases through 0.42.
So the eigenvalue $\lambda=t-\sqrt{t^{2}-b^{2}}$ decreases through -1; 2-cycle no longer attracting.

