Question

Sketch a graph of $f(x)=-2 x^{2}+8 x-5$, and find a partition of two intervals from which it can be deduced that $f: \mathbf{R} \longrightarrow \mathbf{R}$ has periodic points of every period.

Answer

Maximum of $-2 x^{2}+3 x-5$ occurs where $-4 x+8=0$, i.e. $x=2$: then $y=3$. When $x=3$ we have $y=1$; the other solution to $y=1$ is: $x=1$. Hence f maps the interval $[1,3]$ to itself, with $\max (=3)$ at $x=2$.

Partition $\{L, R\}$ has incidence graph $(\mathbb{L}) \mathbb{R}$ and so we have periodic orbits of every period.

