Question

Find three 2-cycles and three 3-cycles for the hyperbolic toral automorphism given by the matrix $A=\left(\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right)$. (There are many more!)
[Hint: find explicit solutions v to $A^{n} v=v \bmod 1$, for $n=2,3$.]
Answer
$\left(A^{2}-I\right)^{-1}=\frac{1}{16}\left(\begin{array}{cc}-12 & 8 \\ 8 & -4\end{array}\right)$ We apply this matrix to $\binom{k}{l}, k, l \in \mathbf{Z}$.
(drop the $\frac{1}{30}$)
$\binom{k}{l}=\binom{1}{0}: \underline{\binom{-19}{8} \mapsto\binom{-1}{2} \mapsto\binom{-19}{8}}$
$\binom{k}{l}=\binom{0}{1}: \overline{\binom{28}{-11} \mapsto\binom{7}{1} \mapsto\binom{28}{-11}}$.
Add: $\binom{9}{-3} \mapsto\binom{6}{3} \mapsto\binom{9}{-3}$.
$\left(A^{3}-I\right)^{-1}=\frac{1}{54}\left(\begin{array}{cc}-34 & 14 \\ 49 & -20\end{array}\right):$
points on distinct 3 -cycles are $\frac{1}{54}\binom{-34}{49},\binom{14}{-20},\binom{-20}{29}$

