
Question

An axisymmetric jet of viscous incompressible fluid of consatn density ρ and
constant kinematice viscosity ν is injected in the positive z-direction through
a jole at r = z = 0 into the same fluid at rest. Cylindrical polar coordinates
(r, θ, z) are used and the flow is independent of θ so that the fluid velocity
is given by w = uer + wez where er and ez are unit vectors in the r− and
z− directions respectively. YOU MAY ASSUME that in a boundary layer
treatment of the flow where the radius of the jet is assumed to be much less
than its length, the (dimensional) boundary layer equations are

uwr + wwz = ν
(

wrr +
1

r
wr

)

(ru)r + (rw)z = 0

(i) Assuming that bot ruw and rwr then to zero as r →∞, show that the
quantity

M = 2πρ
∫

∞

0

rw2 dr

is independent of z and give a physical interpretation of this result.
State two condtions that must be satisfies by the velocity on the z-axis
and give brief reasons why these must hold.

(ii) By using the fact that dM/dz = 0 to help determine m and n, verify
that a similarity solution exists to the problem in the form

ψ = zmf(µ)

µ = rz−n

(ru = −φz, rw = φr)

provided f satisfies the ordinary differential equation

ff ′ − µ(ff ′′ + f ′2) = ν(f ′ − µf ′′ + µ2f ′′′)

and give suitable boundary conditions for this equation.
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Answer

o r z
θ

q = uêr + wêz

We may assume that

uwr + wwz = ν(wrr +
1

r
wr)

(ru)r + (rw)z = 0

(i) Consider

M = 2πρ
∫

∞

0

rw2 dr,
dM

dz
= 2πρ

∫

∞

0

2rwwz dr

Using momentum equation

⇒
dM

dz
= 2πρ

∫

∞

0

2r(ν(wrr =
1

r
wr)− uwr) dr

Integrate by parts:-

dM

dz
= 4πρ

{
∫

∞

0

νrwrr + νwr − ruwr dr
}

= 4πρ
{

[νrwr − ruw]
∞

0
−

∫

∞

0

νwr − νwr − (ru)rw dr
}

Now since rwr, ruw are zero at 0 by symmetry and → 0 as r →∞ we
have

dM

dz
= 4πρ

∫

∞

0

(ru)rwr dr

= −4πρ
∫

∞

0

(rw)zw

= −4πρ
∫

∞

0

rwwz dr

Thus dM
dz

= −dM
dz

so dM
dz

= 0 and M is independent of z.

Physically the result means that the momentum flux of the jet in con-
served along the jet (i.e. is the same ∀z).

By symmetry we require u = wr = 0 at r = 0
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(ii) With ru = −ψz, rw = ψr the continuity equation is automatically
satisfied.

With ψ = zmf(η), η = rz−n we have
u = −ψz/r = −mr

−1zm−1f + nzm−n−1f ′

w = ψr/r = r−1zm−nf ′

wz = r−1(m− n)zm−n−1f ′ − nz6m− 2n− 1f ′′

wr = −r−2zm−nf ′ + r−1zm−2nf ′′

wrr = 2r−3zm−nf ′ − 2r−2zm−2nf ′′ + r−1zm−3nf ′′′

⇒ (−mr−1zm−1f + nzm−n−1f ′)(−r−2zm−nf ′ + r−1zm−2nf ′′)

+r−1zm−nf ′(r−1(m− n)zm−n−1f ′ − nzm−nf ′′)

= ν(2r−3zm−nf ′ − 2r−2zm−2nf ′′ + r−1zm−3nf ′′′ + r−2zm−2nf ′′

−r−3zm−nf ′)

At this stage consider the fact that M is independent of z.

Thus
∫

∞

0

r

r2
z2m−2n(f ′(η))2

dr

dη
dη must not depend upon z.

⇒

∫

∞

0

r−1
z2m−2n

z−n
(f ′(η))2 dη =

∫

∞

0

z2m−2n

η
(f ′(η))2 dη

= 0

⇒ m = n

Thus
(−mr−1zm−1f +mz−1f ′)(−r−2f ′ + r−1z−mf ′′)

+r−1f ′(−mz−m−1f ′′)

= µ(r−3f ′ − r−2z−mf ′′ + r−1z−2mf ′′′)

Thence

mr−3zm−1ff ′ −mr−2z−1ff ′′ −mr−2z−1f ′2

= ν(r−3f ′ − r−2z−mf ′′ + r−1z−2mf ′′′)

mzm−1ff ′ −mrz−1ff ′′ −mrz−1f ′2

= ν(f ′ − rz−mf ′′ + r2z−2mf ′′′)

Comparing the first terms on each side ⇒ m = 1
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⇒ ff ′ − (r/z)ff ′′ − (r/z)f ′2

= ν(f ′ − (r/z)f ′′ + (r2/z2)f ′′)
ff ′ − ηff ′′ − ηf ′2 = ν(f ′ − ηf ′′ + η2f ′′′)

i.e. ff ′ − η(ff ′′ + f ′2) = ν(f ′ − ηf ′′ + η2f ′′′)

B/C’s:- u = wr = 0 at r = 0 ⇒ f(0) = f ′(0) = 0

Flux condition ⇒
∫

∞

0

(f ′(η))2

η
dη = given constant.
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