Question

An axisymmetric jet of viscous incompressible fluid of consatn density ρ and constant kinematice viscosity ν is injected in the positive z-direction through a jole at $r=z=0$ into the same fluid at rest. Cylindrical polar coordinates (r, θ, z) are used and the flow is independent of θ so that the fluid velocity is given by $\underline{w}=u \underline{e}_{r}+w \underline{e}_{z}$ where \underline{e}_{r} and \underline{e}_{z} are unit vectors in the $r-$ and z - directions respectively. YOU MAY ASSUME that in a boundary layer treatment of the flow where the radius of the jet is assumed to be much less than its length, the (dimensional) boundary layer equations are

$$
\begin{aligned}
u w_{r}+w w_{z} & =\nu\left(w_{r r}+\frac{1}{r} w_{r}\right) \\
(r u)_{r}+(r w)_{z} & =0
\end{aligned}
$$

(i) Assuming that bot ruw and $r w_{r}$ then to zero as $r \rightarrow \infty$, show that the quantity

$$
M=2 \pi \rho \int_{0}^{\infty} r w^{2} d r
$$

is independent of z and give a physical interpretation of this result. State two condtions that must be satisfies by the velocity on the z-axis and give brief reasons why these must hold.
(ii) By using the fact that $d M / d z=0$ to help determine m and n, verify that a similarity solution exists to the problem in the form

$$
\begin{aligned}
\psi & =z^{m} f(\mu) \\
\mu & =r z^{-n} \\
(r u & \left.=-\phi_{z}, \quad r w=\phi_{r}\right)
\end{aligned}
$$

provided f satisfies the ordinary differential equation

$$
f f^{\prime}-\mu\left(f f^{\prime \prime}+f^{\prime 2}\right)=\nu\left(f^{\prime}-\mu f^{\prime \prime}+\mu^{2} f^{\prime \prime \prime}\right)
$$

and give suitable boundary conditions for this equation.

Answer

We may assume that

$$
\begin{aligned}
u w_{r}+w w_{z} & =\nu\left(w_{r r}+\frac{1}{r} w_{r}\right) \\
(r u)_{r}+(r w)_{z} & =0
\end{aligned}
$$

(i) Consider

$$
M=2 \pi \rho \int_{0}^{\infty} r w^{2} d r, \quad \frac{d M}{d z}=2 \pi \rho \int_{0}^{\infty} 2 r w w_{z} d r
$$

Using momentum equation

$$
\Rightarrow \frac{d M}{d z}=2 \pi \rho \int_{0}^{\infty} 2 r\left(\nu\left(w_{r r}=\frac{1}{r} w_{r}\right)-u w_{r}\right) d r
$$

Integrate by parts:-

$$
\begin{aligned}
\frac{d M}{d z} & =4 \pi \rho\left\{\int_{0}^{\infty} \nu r w_{r r}+\nu w_{r}-r u w_{r} d r\right\} \\
& =4 \pi \rho\left\{\left[\nu r w_{r}-r u_{w}\right]_{0}^{\infty}-\int_{0}^{\infty} \nu w_{r}-\nu w_{r}-(r u)_{r} w d r\right\}
\end{aligned}
$$

Now since $r w_{r}$, ruw are zero at 0 by symmetry and $\rightarrow 0$ as $r \rightarrow \infty$ we have

$$
\begin{aligned}
\frac{d M}{d z} & =4 \pi \rho \int_{0}^{\infty}(r u)_{r} w_{r} d r \\
& =-4 \pi \rho \int_{0}^{\infty}(r w)_{z} w \\
& =-4 \pi \rho \int_{0}^{\infty} r w w_{z} d r
\end{aligned}
$$

Thus $\frac{d M}{d z}=-\frac{d M}{d z}$ so $\frac{d M}{d z}=0$ and M is independent of z.
Physically the result means that the momentum flux of the jet in conserved along the jet (i.e. is the same $\forall z$).
By symmetry we require $u=w_{r}=0$ at $r=0$
(ii) With $r u=-\psi_{z}, r w=\psi_{r}$ the continuity equation is automatically satisfied.
With $\psi=z^{m} f(\eta), \eta=r z^{-n}$ we have

$$
\begin{gathered}
u=-\psi_{z} / r=-m r^{-1} z^{m-1} f+n z^{m-n-1} f^{\prime} \\
w=\psi_{r} / r=r^{-1} z^{m-n} f^{\prime} \\
w_{z}=r^{-1}(m-n) z^{m-n-1} f^{\prime}-n z 6 m-2 n-1 f^{\prime \prime} \\
w_{r}=-r^{-2} z^{m-n} f^{\prime}+r^{-1} z^{m-2 n} f^{\prime \prime} \\
w_{r r}=2 r^{-3} z^{m-n} f^{\prime}-2 r^{-2} z^{m-2 n} f^{\prime \prime}+r^{-1} z^{m-3 n} f^{\prime \prime \prime} \\
\Rightarrow\left(-m r^{-1} z^{m-1} f+n z^{m-n-1} f^{\prime}\right)\left(-r^{-2} z^{m-n} f^{\prime}+r^{-1} z^{m-2 n} f^{\prime \prime}\right) \\
\quad+r^{-1} z^{m-n} f^{\prime}\left(r^{-1}(m-n) z^{m-n-1} f^{\prime}-n z^{m-n} f^{\prime \prime}\right) \\
=\nu\left(2 r^{-3} z^{m-n} f^{\prime}-2 r^{-2} z^{m-2 n} f^{\prime \prime}+r^{-1} z^{m-3 n} f^{\prime \prime \prime}+r^{-2} z^{m-2 n} f^{\prime \prime}\right. \\
\left.\quad-r^{-3} z^{m-n} f^{\prime}\right)
\end{gathered}
$$

At this stage consider the fact that M is independent of z.
Thus $\int_{0}^{\infty} \frac{r}{r^{2}} z^{2 m-2 n}\left(f^{\prime}(\eta)\right)^{2} \frac{d r}{d \eta} d \eta$ must not depend upon z.

$$
\begin{aligned}
\Rightarrow \int_{0}^{\infty} r^{-1} \frac{z^{2 m-2 n}}{z^{-n}}\left(f^{\prime}(\eta)\right)^{2} d \eta & =\int_{0}^{\infty} \frac{z^{2 m-2 n}}{\eta}\left(f^{\prime}(\eta)\right)^{2} d \eta \\
& =0 \\
& \Rightarrow m=n
\end{aligned}
$$

Thus

$$
\begin{gathered}
\left(-m r^{-1} z^{m-1} f+m z^{-1} f^{\prime}\right)\left(-r^{-2} f^{\prime}+r^{-1} z^{-m} f^{\prime \prime}\right) \\
+r^{-1} f^{\prime}\left(-m z^{-m-1} f^{\prime \prime}\right) \\
=\mu\left(r^{-3} f^{\prime}-r^{-2} z^{-m} f^{\prime \prime}+r^{-1} z^{-2 m} f^{\prime \prime \prime}\right)
\end{gathered}
$$

Thence

$$
\begin{aligned}
& m r^{-3} z^{m-1} f f^{\prime}-m r^{-2} z^{-1} f f^{\prime \prime}-m r^{-2} z^{-1} f^{\prime 2} \\
= & \nu\left(r^{-3} f^{\prime}-r^{-2} z^{-m} f^{\prime \prime}+r^{-1} z^{-2 m} f^{\prime \prime \prime}\right) \\
& m z^{m-1} f f^{\prime}-m r z^{-1} f f^{\prime \prime}-m r z^{-1} f^{\prime 2} \\
= & \nu\left(f^{\prime}-r z^{-m} f^{\prime \prime}+r^{2} z^{-2 m} f^{\prime \prime \prime}\right)
\end{aligned}
$$

Comparing the first terms on each side $\Rightarrow m=1$

$$
\begin{array}{rrl}
\Rightarrow \quad f f^{\prime}-(r / z) f f^{\prime \prime}-(r / z) f^{\prime 2} & \\
=\nu\left(f^{\prime}-(r / z) f^{\prime \prime}+\left(r^{2} / z^{2}\right) f^{\prime \prime}\right) & \\
& f f^{\prime}-\eta f f^{\prime \prime}-\eta f^{\prime 2} & =\nu\left(f^{\prime}-\eta f^{\prime \prime}+\eta^{2} f^{\prime \prime \prime}\right) \\
\text { i.e. } & f f^{\prime}-\eta\left(f f^{\prime \prime}+f^{\prime 2}\right) & =\nu\left(f^{\prime}-\eta f^{\prime \prime}+\eta^{2} f^{\prime \prime \prime}\right) \\
\text { B/C's:- } u=w_{r}=0 \text { at } r=0 \Rightarrow \quad f(0) & =f^{\prime}(0)=0
\end{array}
$$

Flux condition $\Rightarrow \int_{0}^{\infty} \frac{\left(f^{\prime}(\eta)\right)^{2}}{\eta} d \eta=$ given constant.

