Question

Steady viscous incompessible flow takes place parallel to the z-axis in a cylindrical pip of cross section D. The kinematic viscosity and density of the fluid are both constant and are given by ν and ρ respectively and there are no body forces. By assuming a velocity of the form $\underline{q}=(0,0, w(x, y))$, show that the pressure gradient $-P$ in the z-direction must be constant. Show also that w satisfies the equation

$$
\nabla^{2} w=A
$$

where A is a constant that you should specify, and give suitable boundary conditions for w.
When D is a circular disc of radius a, find w and show that the mass flus M is given by the Hagen-Poiseulle discharge formula.

$$
M=\frac{\pi P a^{4}}{8 \nu}
$$

Suppose now that viscous incompressible flow takes place in the same circular pipe but is driven by an unsteady pressure gradient $p_{z}=p_{0} e^{-k^{2} t}$ where t denores time and p_{0} and k are constants. By seeking a solution of the form $\underline{q}=\left(0,0, R(r) e^{-k^{2} t}\right)$, show that the function R satisfies the ordinary differential equation

$$
R^{\prime \prime}+\frac{1}{r} R^{\prime}+A R=B
$$

where A and B are constants which you should specify. Give suitable boundary conditions for this equation.
[You may use, without proof, the fact that in cylindrical polar coordinates (r, θ, z)

$$
\left.\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}} .\right]
$$

Answer

Assume $\underline{q}=(0,0, w(x, y))$ then $\operatorname{div}(\underline{q})=0$
The three components of the Navier-Stokes equations become

$$
\left.\begin{array}{l}
0=-p_{x} / \rho+0 \\
0=-p_{y} / \rho+0 \\
0=-p_{z} / \rho+\nu\left(w_{x x}+w_{y y}\right)
\end{array}\right\} \Rightarrow p=p(z) \text { only. }
$$

Now by the standard separation of variables argument, since $w=w(x, y)$ only we have

$$
\begin{array}{rlrl}
& & -p_{z} / r h o & =\text { constant } \\
\Rightarrow & -p_{z} / \rho & =P / \rho \text { say. (P constant) } \\
\Rightarrow & 0 & =P / \rho+\nu \nabla^{2} w \\
\Rightarrow & \nabla^{2} w & =-P / m u \quad(\underline{x} \in D)
\end{array}
$$

Boundary conditions:- by no-slip we need $w=0$ on δD.
If D is a circle of radius a, then the problem becomes (assuming symmetry so that $w=w(r)$ only)

$$
\begin{aligned}
\frac{1}{r}\left(r w_{r}\right)_{r} & =-\frac{p}{\mu} \quad(w=0 \text { on } \mathrm{r}=\mathrm{a}) \\
\Rightarrow \quad\left(r w_{r}\right)_{r} & =-\frac{P r}{\mu}, \\
r w_{r} & =-\frac{P r^{2}}{2 \mu}+C \\
\Rightarrow \quad w_{r} & =-\frac{P r}{2 \mu}+\frac{C}{r}
\end{aligned}
$$

So $w=-\frac{P r^{2}}{4 \mu}+C \log r+D$.
Must choose $C=0$ so that $w<\infty$ at $r=0$
Now imposing $w(a)=1 \quad \Rightarrow$

$$
\begin{gathered}
w=\frac{P}{4 \mu}\left(a^{2}-r^{2}\right) \\
M=\int_{\text {pipe }} \rho w d A=\int_{\theta=0}^{2 \pi} \int_{r=0}^{a} \frac{\rho P}{4 \mu}\left(a^{2}-r^{2}\right) r d r d \theta \\
=2 \pi\left[\frac{\rho P}{4 \mu}\left(\frac{a^{2} r^{2}}{2}-\frac{r^{4}}{4}\right)\right]_{0}^{a}=\frac{2 \pi \rho P}{4 \mu} \frac{a^{4}}{4}
\end{gathered}
$$

Thus as required

$$
M=\frac{\pi P a^{4}}{8 \nu}
$$

Now the flow is UNSTEADY with $p_{z}=-p_{o} e^{-k^{2} t}$.
Again we seek $\underline{q}=(0,0, w)$ where now w is a function of r and t. So still $\operatorname{div}(\underline{q})=0$.
The only N/S equation that does not give $0=0$ is

$$
w_{t}=-p_{x} / \rho+\nu \nabla^{2} W
$$

So, with w as suggested, we find that

$$
\begin{aligned}
& \left.\begin{array}{rl}
-k^{2} R e^{k^{2} t} & =-\frac{p_{0}}{\rho} e^{-k^{2} t}+\nu e^{-k^{2} t} \frac{1}{r}\left(r R^{\prime}\right)^{\prime} \\
\Rightarrow & -k^{2} R= \\
\Rightarrow & -\frac{p_{0}}{\rho}+\frac{\nu}{r}\left(R^{\prime}+r R^{\prime \prime}\right) \\
& \text { i.e. } \quad R^{\prime \prime}+\frac{\nu R^{\prime}}{r}+k^{2} R
\end{array}\right) \frac{p_{0}}{\rho} \\
& \left(A=\frac{k^{2}}{\nu}, \quad B=\frac{R_{0}^{\prime}}{\nu \rho}\right)
\end{aligned}
$$

Boundary conditions:- need $R(a)=0$

