QUESTION The set of all 2×2 matrices with real entries forms a vector space over \mathbf{r}. Which of the following subsets of matrices are subspaces?
(a) the set of those with zero trace;
(b) the set of those with zero determinant;
(c) the set of those with integer entries;
(d) the set of symmetric matrices.

ANSWER
(a) Yes - if $\operatorname{tr} A=\operatorname{tr} B=0$ then $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B=0$ and $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr} A=0$.
(b) No - it is easy to construct examples where $\operatorname{det} A=\operatorname{det} B=0$ but $\operatorname{det}(A+B) \neq 0$.
(c) No - if A contains any odd numbers then $\frac{1}{2} A$ is not in the set.
(d) Yes - A and B symmetric imply both $A+B$ and λA symmetric.

