QUESTION

Consider the following modification of the classic Buffon's needle experiment: two needles of the same length, ℓ, fused at right angles at their centres, are thrown on a horizontal ruled floor, with parallel lines at a distance $d=\ell$ apart. Let X and Y be binary variables, indicating whether each of the needles crosses a line. Let $Z=X+Y$ be the number of times that this cross arrangement intercepts a line.
(i) Find $\operatorname{Prob}(Z=0), \operatorname{Prob}(Z=1)$ and $\operatorname{Prob}(Z=2)$.
(ii) Find the variance of Z.
(iii) Using the fact that $\operatorname{var}(Z)=\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y)$, find $\operatorname{cov}(X, Y)$.
(iv) Comment on the use of this cross arrangement as a variance reduction technique.

ANSWER

Simulation
d

(i) $P(Z=2)=(A+B) /(\pi l / 2)$
$P(Z=0)=(C+D) /(\pi l / 2)$
$P(Z=1)=1-P(Z=0)-P(Z=2)$

$$
\begin{aligned}
A+B & =2 \times\left\{\int_{0}^{\frac{\pi}{4}} \frac{l}{2} \sin \theta d \theta+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{l}{2} \sin \left(\frac{\pi}{2}-\theta\right) d \theta\right\} \\
& =l \times[-\cos \theta]_{0}^{\frac{\pi}{4}}+l \times\left[\cos \left(\frac{\pi}{2}-\theta\right)\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\
& =l \times\left[-\frac{\sqrt{2}}{2}+1+1-\frac{\sqrt{2}}{2}\right]=l(2-\sqrt{2})
\end{aligned}
$$

$$
\left.\begin{array}{l}
P(Z=2)=[l(2-\sqrt{2})] /(\pi l / 2)=2(2-\sqrt{2}) / \pi \\
C+D=2 \times\left\{\frac{\pi l}{4}-\int_{0}^{\frac{\pi}{4}} \frac{l}{2} \sin \left(\frac{\pi}{2}-\theta\right) d \theta-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{l}{2} \sin \theta d \theta\right\} \\
\\
=l \times\left[\frac{\pi}{2}-\cos \left(\frac{\pi}{2}-\theta\right)\right]_{0}^{\frac{\pi}{4}}+l \times[\cos \theta]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\
\\
=l \times\left(\frac{\pi}{2}-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right)=l \times\left(\frac{\pi}{2}-\sqrt{2}\right) \\
P(Z=0)=\left[l\left(\frac{\pi}{2}-\sqrt{2}\right)\right] /(\pi l / 2)=(\pi-2 \sqrt{2}) / \pi
\end{array}\right] \begin{aligned}
P(Z=1)=1-\frac{2(2-\sqrt{2})}{\pi}-\frac{(\pi-2 \sqrt{2})}{\pi}=\frac{4(\sqrt{2}-1)}{\pi}
\end{aligned}
$$

Hence $P(Z=0)=0.0997, \quad P(Z=1)=0.527, \quad P(Z=2)=0.373$
(ii) $E(Z)=1.273, \quad E\left(Z^{2}\right)=2.019, \quad \operatorname{var}(Z)=0.398$
(iii) X and Y have the same distribution:

$$
\begin{aligned}
& P(X=1)=\frac{2}{\pi l / 2} \int_{0}^{\frac{\pi}{2}} \frac{l}{2} \sin \theta d \theta \\
&=\frac{2}{\pi}[-\cos \theta]_{0}^{\frac{\pi}{2}}=\frac{2}{\pi} \\
& P(X=0)=1-\frac{2}{\pi} \\
& E(X)=\frac{2}{\pi}, \quad \operatorname{var}(X)=\frac{2}{\pi}\left(1-\frac{2}{\pi}\right)=\operatorname{var}(Y)
\end{aligned}
$$

Therefore $\operatorname{cov}(X, Y)=(0.398-2 \times 0.231) / 2=-0.032$
(iv) Observe that $\operatorname{var}\left(\frac{Z}{2}\right)=\frac{1}{4} \operatorname{var}(Z)=0.0995$

If we throw one needle twice on the floor,

$$
\operatorname{var}\left(\frac{X_{1}+X_{2}}{2}\right)=\frac{\operatorname{var}(X)}{2}=0.1155
$$

The size of the cross arrangement therefore not only speeds up the process but also reduces the variance

