Question

Let $\mathcal{R}[0,1]$ be the set of Riemann-integrable functions over [0,1]. Find a sequence of functions $\{f_n\}$, $f_n:[0,1]\to \mathbf{R}$, with the properties

- i) there exists $f:[0,1]\to \mathbf{R}$, for all $x\epsilon[0,1]$, $\lim_{n\to\infty}f_n(x)=f(x)$
- ii) there exists $M \in \mathbf{R}$, for all $n \in \mathbf{N}$, for all $x \in [0, 1]$, $|f_n(x)| \leq M$
- iii) for all $x \in [0,1]$ $|f(x)| \leq M$
- iv) for all $n \in \mathbb{N}$, $f_n \in \mathcal{R}[0, 1]$
- v) $f \notin \mathcal{R}[0,1]$

and summarise these properties in words.

Answer

Let $r_1, r_2 \cdots$ be an enumeration of the rationals in [0, 1].

Let
$$f_n(x) = \begin{cases} 1 & \text{if } x = r_1, r_2, \dots r_n \\ 0 & \text{otherwise} \end{cases}$$

Let $f_n(x) = \begin{cases} 1 & \text{if } x = r_1, r_2, \dots r_n \\ 0 & \text{otherwise} \end{cases}$ This provides the required example of a uniformly bounded sequence of Riemann integrable functions converging to a non-Riemann integrable function.