Question

The boundary of a domain D_{1} in the $z=x+i y$ domain is the ellipse $\left(\frac{X}{5}\right)^{2}+$ $\left(\frac{y}{3}\right)^{2}=\frac{1}{4}$ together with the line $y=0,|x|<2$. Show that an application of the Joukowski transform $z=w+\frac{1}{w}$, where $w=u+i v$ maps D_{1} onto two concentric circles in the w-plane, centred on the origin, of radius 1 and 2 . (Hint: Note that the notation of the Joukowski transform is here the reverse of the lectures. Start with the w-circles and work back to the z-plane).

Answer

The Joukowski tranform $z=w+\frac{1}{w}$ maps w-circles to z-ellipses. (NB notation is opposite of lecture.)
So if $z=w+\frac{1}{w}$ then the circle $|w|=1$ corresponds to the segment $y=$ $0,|x|<2$ in the z-plane, as shown in the lectures:

$$
\left.\begin{array}{l}
x=\left(R+\frac{1}{R}\right) \cos \theta \\
y=\left(R-\frac{1}{R}\right) \sin \theta
\end{array}\right\} \quad \xrightarrow{R=1} \quad\left\{\begin{array}{l}
x=2 \cos \theta \\
y=0
\end{array}\right.
$$

The circle $|w|=R$ maps to the ellipse

$$
\left(\frac{x}{R+\frac{1}{R}}\right)^{2}+\left(\frac{y}{R-\frac{1}{R}}\right)^{2}=1
$$

To get the given ellipse, we need $R+\frac{1}{R}=\frac{5}{2}, R-\frac{1}{R}=\frac{3}{2} \Rightarrow R=2$, as required.

