Question

What sort of geometric shapes are the objects $|z-9 i| \leq 15,|z+16 i| \leq$ 20? Where do the boundaries of these regions meet the real axis? Sketch the regions. Show that the Möbius map $w=\left(\frac{z-12}{z+12}\right)$ transforms the boundaries into two straight lines, and find the equations of these lines.
Answer
$\left.\begin{array}{rl}|z-9 i| & \leq 15 \\ |z+16 i| & \leq 20\end{array}\right\}$ are filled circles
(1) $|z-9 i|<15 \Rightarrow$ circle centre $9 i$, radius ≤ 15
(2) $|z+16 i| \leq 20 \Rightarrow$ circle centre $-16 i$, radius ≤ 20
(z)

PICTURE

(1) intersects x-axis where

$$
\begin{aligned}
|x-9 i| & =15 \\
\Rightarrow x^{2}+81 & =225 \\
\Rightarrow x^{2} & =144 \\
x & = \pm 12!
\end{aligned}
$$

(2) intersects x-axis where

$$
\begin{aligned}
|x+16 i| & =20 \\
\Rightarrow x^{2}+256 & =400 \\
\Rightarrow x^{2} & =144 \\
x & = \pm 12!
\end{aligned}
$$

If we want to map circles \rightarrow lines we need something to go to ∞ in the Möbius mapping.
$w=\frac{\alpha z+\beta}{\gamma z+\delta}$, e.g., we could map $z=-12$ to ∞. Then any circle through $z=-12$ maps to a line, so take $w=\frac{z-12}{z+12}$ say.
What lines?
$w(z+12)=(z-12) \Rightarrow z=-12 \frac{(w+1)}{(w-1)}$
so

$$
\begin{aligned}
|z-9 i|=15 & \rightarrow\left|-12 \frac{(w+1}{(w-1)}-9 i\right|=15 \\
& \Rightarrow\left|w+\frac{(12-9 i)}{(12+9 i)}\right|=|w-1| \\
|z+16 i|=20 & \rightarrow\left|-12 \frac{(w+1}{(w-1)}+16 i\right|=20 \\
& \Rightarrow\left|w+\frac{(12+16 i)}{(12-16 i)}\right|=|w-1|
\end{aligned}
$$

UGH!
Note that $\left(\frac{12-9 i}{12+9 i}\right)$ and $\left(\frac{12+16 i}{12-16 i}\right)$ lie on the circle $|w|=1$. Thus the lined bisect the chords joining two points on a circle's circumference. Thus the two lined must pass through the centre of $w=0$!
PICTURE
A, B are any two points on circle centre 0 . The bisector of chord $A B$ is what we want, which by definition (equals θ 's) must pass through 0 !

