Question

Repeat question 6A, but now finding the transformation directly from the general form of a Möbius map by choosing any three points on $\operatorname{Re}(z)+$ $\operatorname{Im}(z)=1$ and their images on $|w|=1$. Are the mappings of Q6A and Q6B unique? If we demand that the region $\operatorname{Re}(z)=\operatorname{Im}(z)<1$ is mapped to the interior of $|w|=1$, do your maps satisfy this condition? If they do not, find a simple remedy in the form of an additional transformation which is to be carried out.

Answer

$w=\frac{\alpha z+\beta}{\gamma z+\delta}$
Without loss of generality we divide through by $w=\frac{a z+b}{c z+d}$ for a, b, c, d to be determined.
Pick any three points on $x+y=1$, say $1, \frac{1}{2}(1+i), i$.
Now pick any three image points on $|w|=1$ say $1, i 1,-1$.
Thus we solve:

$$
\left.\begin{array}{rl}
\frac{z}{1} & \longrightarrow \frac{w}{1} \\
\frac{1}{2}(1+i) & \longrightarrow i \\
i & \longrightarrow-1
\end{array}\right\} \Rightarrow \begin{aligned}
1 & =\frac{a+b}{1+c} \\
i & =\frac{\frac{1}{2} a(1+i)+b}{\frac{1}{2}(1+i)+c} \\
-1 & =\frac{a i+b}{i+c}
\end{aligned}
$$

Solve for a, b, c to get $\left\{\begin{array}{l}b=0, a=\frac{1}{i} \\ c=-1-i\end{array}\right.$
Thus $w=\frac{z}{i z+(1-i)}$
This is clearly a different map to Q6A. This is not surprising since we could pick any 3 points and any 3 images for the Möbius map. Thus Möbius maps cannot be unique for this problem: the overall shapes are correct (line \rightarrow circle) but the individual maps of z-points may get mixed up. You probably have a different Möbius map for this reason.
If we require $x+y<1$ to map to $|w|<1$ try a test point for

$$
w=\frac{\sqrt{2}[(1+i)-z]}{(1+i) z} \text { and } \mathrm{w}=\frac{\mathrm{z}}{\mathrm{iz}+(1-\mathrm{i})}
$$

say $z=0$,

$$
w=\sqrt{2}\left[\frac{(1+i)-0}{(1+i) 0}\right] \rightarrow \infty ; w=0
$$

Thus the solution of Q6A is not sufficient, but the solution of Q6B is. We can remedy the solution of Q6A by making a further transform $w_{4}=$ $\frac{1}{w_{3}}$. Why? Well $|w|=\left|w_{3}\right|=1 \rightarrow\left|w_{4}\right|=1$. The boundary is therefore unchanged. But $\left|w_{3}\right|<1$ is mapped to $\left|w_{4}\right|>1$ and vice versa. Hence the new mapping $w=\frac{1}{w_{3}}$ is

$$
w=\frac{(1+i) z}{\sqrt{2}[(1+i)-z]}
$$

and now the test point $z=0 \rightarrow w=0$, i.e., to the interior of the unit circle.

