Question

Repeat question 6A, but now finding the transformation directly from the
general form of a Mébius map by choosing any three points on Re(z) +
Im(z) =1 and their images on |w| = 1. Are the mappings of Q6A and Q6B
unique? If we demand that the region Re(z) = I'm(z) < 1 is mapped to the
interior of |w| = 1, do your maps satisfy this condition? If they do not, find
a simple remedy in the form of an additional transformation which is to be
carried out.
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Pick any three points on z +y = 1, say 1, 5(1 +1), 1.

Now pick any three image points on |w| =1 say 1, i1, —1.
Thus we solve:
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This is clearly a different map to Q6A. This is not surprising since we could
pick any 3 points and any 3 images for the Mobius map. Thus Moébius maps
cannot be unique for this problem: the overall shapes are correct (line —
circle) but the individual maps of z-points may get mixed up. You probably
have a different M6bius map for this reason.

If we require = +y < 1 to map to |w| < 1 try a test point for
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say z = 0,



Thus the solution of Q6A is not sufficient, but the solution of Q6B is.
We can remedy the solution of Q6A by making a further transform w, =

1
—. Why? Well |w| = |ws| = 1 — |w4|] = 1. The boundary is therefore
w
unchanged. But |ws| < 1 is mapped to |ws| > 1 and vice versa. Hence the
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new mapping w = — is
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and now the test point z =0 — w = 0, i.e., to the interior of the unit circle.




