Question

Show that the line Re(z) + Im(z) = 1 can be written as |z| = |z - 1 - i|. Hence, by building up the mapping in a series of steps, find a transformation which takes this line to the unit circle |w| = 1.

Answer

Plot the region boundary:

$$\begin{split} z &= x + iy \\ Re(z) + (z) &< 1 \Rightarrow x + y < 1 \end{split}$$

If we can write it as |z|=|z-(1+i)|, then the distance of any z (on the line x+y=1) from (1+i) and 0 is the same. Thus we have to show that x+y=1 bisects the line from 0 to (1+i). Simple geometry comes into play: Let OPQ lie on y=x with $|OP|=|PQ|\longrightarrow P$ is then $(x,y)=(\frac{1}{2},\frac{1}{2})$ $\overrightarrow{OP}=(\frac{1}{2},\frac{1}{2})$ $\Rightarrow \overrightarrow{PQ}=(1,1)$ Thus $Q=\underline{1+i}$ PICTURE

Hence

$$|z - 0| = |z - (1+i)|$$

$$\Rightarrow |z| = |z - (1+i)|$$
 as required.

Now to map line \longrightarrow a circle.

(i) Try an inversion $w_1 = \frac{1}{z}$. Why?

$$|z| = \infty \xrightarrow{w_1} w_1 = 0$$
 finite

all other z on line x + y = 1 are finite and $\neq 0 \xrightarrow{w_1} w_1 = 0$ finite

We know that inversions 1z map lines/circles to lines/circles, but all points in w, which are images of x + y = 1 points are finite. Hence image of x + y = 1 must be a circle.

$$w_{1} = \frac{1}{z} \implies \left| \frac{1}{w_{1}} \right| = \left| \frac{1}{w_{1}} - (1+i) \right|$$

$$\Rightarrow 1 = |1 - (1+i)w_{1}|$$
or
$$1 = |w_{1}(1+i) - 1|$$
or
$$\frac{1}{|1+i|} = \left| w_{1} - \frac{1}{1+i} \right|$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \left| w - 1 - \frac{1}{1+i} \right|$$

i.e., distance from 1+i in w_1 plane is always $\frac{1}{\sqrt{2}} \Rightarrow$ a circle centre $w_1 = \frac{1}{1+i}$, radius $\frac{1}{\sqrt{2}}$.

(ii) Shift circle to origin $w_2 = w_1 - \frac{1}{1+i}$ PICTURE

(iii) Scale radius by $\sqrt{2}$ $w_3 = \sqrt{2}w_2$. PICTURE

Set $w_3 = w$ and assemble (i) \rightarrow (iii).

$$w = \sqrt{2}w_2 = \sqrt{2}\left(w_1 - \frac{1}{1+i}\right) = \sqrt{2}\left(\frac{1}{z} - \frac{1}{1+i}\right)$$
$$\Rightarrow w = \sqrt{2}\frac{((1+i)-z)}{(1+i)z}$$

Note that $z = 0 \longrightarrow w = \infty$.