Question

Show that the line $\operatorname{Re}(z)+\operatorname{Im}(z)=1$ can be written as $|z|=|z-1-i|$. Hence, by building up the mapping in a series of steps, find a transformation which takes this line to the unit circle $|w|=1$.

Answer

Plot the region boundary:
$z=x+i y$
$\operatorname{Re}(z)+(z)<1 \Rightarrow x+y<1$

If we can write it as $|z|=|z-(1+i)|$, then the distance of any z (on the line $x+y=1)$ from $(1+i)$ and 0 is the same. Thus we have to show that $x+y=1$ bisects the line from 0 to $(1+i)$. Simple geometry comes into play: Let $O P Q$ lie on $y=x$ with $|O P|=|P Q| \longrightarrow P$ is then $(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right)$ $\overline{O P}=\left(\frac{1}{2}, \frac{1}{2}\right)$
$\Rightarrow \overline{P Q}=(1,1)$
Thus $Q=\underline{1+i}$
PICTURE

Hence
$|z-0|=|z-(1+i)|$
$\Rightarrow|z|=|z-(1+i)|$ as required.
Now to map line \longrightarrow a circle.
(i) Try an inversion $w_{1}=\frac{1}{z}$. Why?

$$
|z|=\infty \xrightarrow{w_{1}} w_{1}=0 \text { finite }
$$

all other z on line $x+y=1$ are finite and $\neq 0 \xrightarrow{w_{1}} w_{1}=0$ finite
We know that inversions $1 z$ map lines/circles to lines/circles, but all points in w, which are images of $x+y=1$ points are finite. Hence image of $x+y=1$ must be a circle.

$$
\begin{aligned}
w_{1}=\frac{1}{z} & \Rightarrow & \left|\frac{1}{w_{1}}\right| & =\left|\frac{1}{w_{1}}-(1+i)\right| \\
& \Rightarrow & 1 & =\left|1-(1+i) w_{1}\right| \\
& \text { or } & 1 & =\left|w_{1}(1+i)-1\right| \\
& \text { or } & \frac{1}{|1+i|} & =\left|w_{1}-\frac{1}{1+i}\right| \\
& \Rightarrow & \frac{1}{\sqrt{2}} & =\left|w-1-\frac{1}{1+i}\right|
\end{aligned}
$$

i.e., distance from $1+i$ in w_{1} plane is always $\frac{1}{\sqrt{2}} \Rightarrow$ a circle centre $w_{1}=\frac{1}{1+i}$, radius $\frac{1}{\sqrt{2}}$.
(z)

(ii) Shift circle to origin $w_{2}=w_{1}-\frac{1}{1+i}$ PICTURE
(iii) Scale radius by $\sqrt{2} w_{3}=\sqrt{2} w_{2}$. PICTURE

Set $w_{3}=w$ and assemble (i) \rightarrow (iii).
$w=\sqrt{2} w_{2}=\sqrt{2}\left(w_{1}-\frac{1}{1+i}\right)=\sqrt{2}\left(\frac{1}{z}-\frac{1}{1+i}\right)$
$\Rightarrow w=\sqrt{2} \frac{((1+i)-z)}{(1+i) z}$
Note that $z=0 \longrightarrow w=\infty$.

