Question

What is the image of the wedge defined by $0 \leq \arg z \leq \frac{\pi}{n}, n$ integer, under the transformation $w=f(z)=z^{m}$, m integer? Discuss any special values of m. What happens if n or m is non-integer? What happens when $m>2 n$?

Answer

Define wedge boundaries by $z=r e^{i \frac{\pi}{n}}$ and $z=r, r>0$.
(z)

Then $w=f(z)=z^{m}$ gives

$$
w=r^{m} e^{i m \frac{\pi}{n}}, z=r^{m}
$$

i.e., a wedge of angle of opening $\frac{m \pi}{n}$:

Note that if $m=n$ we have wedge in $z \longrightarrow$ upperhalf plane in w.
If $m=2 n$ we have wedge in $z \longrightarrow$ complete w-plane.
If m or n is non-integer, we just have an irrational "fraction" of π as an opening angle of the sector in (w).
If $m>2 n$ we map the z-wedge onto more than one revolution of the (w) plane.

This is bad, since it can lead to ambiguities, i.e., certain values of w refer to two values of z (in the overlap region of w-plane).

