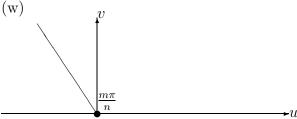

Question

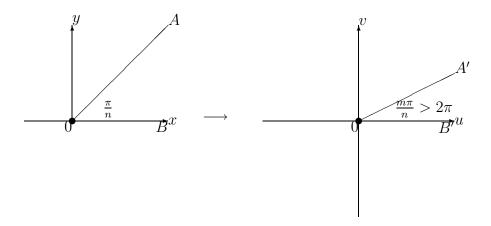
What is the image of the wedge defined by $0 \le \arg z \le \frac{\pi}{n}$, n integer, under the transformation $w = f(z) = z^m$, m integer? Discuss any special values of m. What happens if n or m is non-integer? What happens when m > 2n?


Answer

Define wedge boundaries by $z = re^{i\frac{\pi}{n}}$ and z = r, r > 0.

$$w = r^m e^{im\frac{\pi}{n}}, \ z = r^m$$

i.e., a wedge of angle of opening $\frac{m\pi}{n}$:



Note that if m = n we have wedge in $z \longrightarrow$ upperhalf plane in w.

If m=2n we have wedge in $z\longrightarrow {\rm complete}\ w{\rm -plane}.$

If m or n is non-integer, we just have an irrational "fraction" of π as an opening angle of the sector in (w).

If m > 2n we map the z-wedge onto more than one revolution of the (w) plane.

This is bad, since it can lead to ambiguities, i.e., certain values of w refer to two values of z (in the overlap region of w-plane).