Question

Determine the region of the w plane into which each of the following is mapped by the transformation $w=z^{2}$.
(i) The first quadrant of the z-plane.
(ii) The region bounded by $x=1, y=1, x+y=1$ (Hint: calculate the real and imaginary coordinates of the transformed line segments and sketch curves in the w-plane which they parametrise.)

Answer

Let $w=z^{2}, z=r e^{i \theta}$. Then $w=r^{2} e^{2 i \theta}$. Thus points at (r, θ) are rotated by a further angle θ and their modulus stretched by a factor r.
(i) First quadrant of z-plane

All points in 1st quadrant occupy $r>0,0 \leq \theta \leq \frac{\pi}{2}$. Thus all points in $w\left(=\rho e^{i \phi}\right)$-plane occupy $\rho>0,0 \leq \phi \leq \pi$, i.e., the upper half of the w-plane.
(ii) Region bounded by $x=1, y=1 m x+y=1$.

If $w=z^{2}$ we have

$$
(u+i v)=(x+i y)(x+i y)=x^{2}-y^{2}+2 i x y
$$

Therefore $\left\{\begin{aligned} u & =x^{2}-y^{2} \\ v & =2 x y\end{aligned}\right.$
Thus the lines

$$
\begin{aligned}
& x=1 \rightarrow\left\{\begin{array}{l}
u=1-y^{2} \\
v=2 y
\end{array}\right\} \Rightarrow u=1-\frac{v^{2}}{4} \\
& y=1 \rightarrow\left\{\begin{array}{l}
u=x^{2}-1 \\
v=2 x
\end{array}\right\} \Rightarrow u=\frac{v^{2}}{4}-1 \\
& \begin{aligned}
x+y=1 \\
\text { or y }=1-x
\end{aligned} \rightarrow\left\{\begin{aligned}
u & =x^{2}-(1-x)^{2} \\
& =2 x-1 \\
v & =2 x(1-x) \\
& =2 x-2 x^{2}
\end{aligned}\right\} \Rightarrow v=\frac{1}{2}\left(1-u^{2}\right)
\end{aligned}
$$

Thus we have:
(z)

Pick a points inside the region $A B C$ to see where it goes and confirm $A B C \rightarrow A^{\prime} B^{\prime} C^{\prime}$ shaded region.
Note that $w^{\prime}=f(z)=2 z$, so unless $z=0$ the local angles should be conserved.
Thus is $\angle B A C=\angle A B C=\frac{\pi}{4}$
then $\angle B^{\prime} A^{\prime} C^{\prime}$ (or the tangents' angle at A^{\prime}) is $\frac{\pi}{4}$
$\angle A^{\prime} B^{\prime} C^{\prime}$ (or the tangents' angle at B^{\prime}) is $\frac{\pi}{4}$
Similarly $\angle A C B=\frac{\pi}{2}$ and $\angle A^{\prime} C^{\prime} B^{\prime}$ is $\frac{\pi}{2}$

