Let $[a, b]$ be a closed interval in \mathbf{R}, and let A be a given subset of \mathbf{R} such that $a \in A$ and $b \notin A$. The purpose of this exercise is to show that A cannot be both open and closed (so the only sets in R which are both open and closed are the empty set \emptyset and the real line \mathbf{R} itself). Let $V=A \cap[a, b]$, and let ξ be the supremum (least upper bound) of V. Clearly $a<\xi<b$ since $a \in V$ but $b \notin V$. Does ξ belong to A or not ? Show that if A is open then ξ does not belong to A, and if A is closed then ξ does not belong to the complement of A. Therefore A cannot be both open and closed.
Answer
Suppose $\xi \in A$. Since A is open, there exists $\epsilon>0$ with $(\xi-\epsilon, \xi+\epsilon) \subset A$ and with $\xi+\epsilon<b$, so $\xi+\epsilon \in V$ and of course $\xi+\epsilon>\xi$.
This contradicts ξ being an upper bound for V.
Let $B=\Re \backslash A$. Suppose $\xi \in B$, since B is open, there exists $\epsilon>0$ with $(\xi-\epsilon, \xi+\epsilon) \subset$ B and with $\xi-\epsilon>a$, so $\xi-\epsilon$ is an upper bound for V but $\xi-\epsilon<\xi$.
This contradicts ξ being the least upper bound for V. So ξ can belong to neither A nor $B=\Re \backslash A$; impossible, so A cannot be both open and closed.

