Question

The function $f: \mathbf{R} \to \mathbf{R}$ given by

$$f(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$

is not continuous at 0. Give an example of an open set $V \subset \mathbf{R}$ for which $F^{-1}(V)$ is not open, and a closed set $C \subset \mathbf{R}$ for which $F^{-1}(C)$ is not closed. Do likewise for the functions g,h:

$$g(x) = \begin{cases} 2x+3, & x \ge 1 \\ -x+4, & x < 1 \end{cases} \qquad h(x) = \begin{cases} \sin(\frac{1}{x}), & x > 0 \\ 0, & x \le 0 \end{cases}.$$

Answer

Let

 $V=(0,\infty)$; then $f^{-1}(V)=[0,\infty)$: not open

 $C = (-\infty, 0]$; then $f^{-1}(C) = (-\infty, 0)$: not closed.

Let

 $V = (4, \infty)$; then $g^{-1}(V) = (-\infty, 0) \cup [1, \infty)$: not open

 $C = (-\infty, 4]$; then $g^{-1}(C) = [0, 1)$: not closed

Let $V = (4, \infty)$; then $g^{-1}(V) = (-\infty, 1) \cup (1, \infty)$, i.e. $\Re \setminus \{1\}$. Then $h^{-1}(V)$ consists of the positive x-axis with all points $\frac{1}{2n\pi + \frac{\pi}{2}}$, $n \in \mathbb{N}$, removed, together with

the negative x-axis including 0. Thus there is no interval $(-\epsilon, \epsilon)$ $(\epsilon > 0)$ entirely contained in $h^{-1}(V)$, but $0 \in h^{-1}(V)$.

For C take the complement of V, namely $\{1\}$. Then all points $a_n = (2n\pi + \frac{\pi}{2})^{-1}$ lie in C, and $a_n \to 0$ as $n \to \infty$, but $0 \notin C$.