Question

Given a function $f: A \rightarrow \mathbf{R}$, define a new function $-f: A \rightarrow \mathbf{R}$ by $(-f)(a)=-f(a)$. Prove that $\inf (-f)=-\sup (f)$.
Answer
Let $c=\sup (f)$, so that $c=\sup \{f(a) \mid a \in A\}$. In particular, $c \geq f(a)$ for all $a \in A$, and if u is any number satisfying $u \geq f(a)$ for all $a \in A$, then $u \leq c$. Multiplying by -1 , we see that $-c \leq-f(a)$ for all $a \in A$ and that if s is any number satisfying $s \leq-f(a)$ for all $a \in A$, then $s \geq-c$. However, this is exactly the definition that $-c=\inf (-f)$, as desired.

