REAL ANALYSIS

FUNCTIONS OF SEVERAL VARIABLES
We denote $\left(x_{1} \ldots x_{2}\right)$ by X and $f\left(x_{1} \ldots x_{n}\right)$ by $f(X)$. We may think of X as a vector or a point.

If $A=\left(a_{1} \ldots a_{n}\right) B=\left(b_{1} \ldots B-n\right)$ then
$A-B=\left(a_{1}-b_{1} \ldots a_{n}-b_{n}\right)$
$A+B=\left(a_{1}+b_{1} \ldots a_{n}+b_{n}\right)$
A. $B=a_{1} b_{1}+\ldots+a_{n} b_{n}-$ a scalar
$\|A\|=\sqrt{a_{1}^{2}+\ldots+a_{n}^{2}}$ norm of A
$\|A-B\|=\sqrt{\left(1_{a}-a_{b}\right)^{2}+\ldots+\left(a_{n}-b_{n}\right)^{2}}$ is the distance $A B$
$|A . B| \leq\|A\|\|B\|$ Cauchy's inequality.
Suppose we have m functions of n variables ${ }^{(1)} f(X),{ }^{(2)} f(X) \ldots{ }^{(m)} F(X)$.
We shall denote by the vector function

$$
F(X)=\left({ }^{(1)} f\left(x_{1} \ldots x_{n}\right), \ldots{ }^{(m)} f\left(x_{1} \ldots x_{n}\right)\right)
$$

Theorem 1 If $f(X) g(X)$ are continuous at A relative to S then so are $f(X) \pm g(X), f(X) g(X)$ and, if $g(A) \neq 0, \frac{f(X)}{g(X)}$.

Theorem 2 Suppose that the components ${ }^{(1)} f(X) \ldots{ }^{(m)} f(X)$ of the vector function $F(X)$ are continuous at A relative to S. Let $B=F(A)$ and let T be the set of all points $F(X)$ with X in S. Then if $g(Y)=g\left(y_{1} \ldots y_{m}\right)$ is continuous at B relative to T, it follows that $g(F(x))$ is continuous at A relative to S.

Differentiability $f(X)$ is differentiable at $X+A \Leftrightarrow \exists$ a vector $G \left\lvert\, \frac{f(X)-f(A)-G(X-A)}{\|X-A\|} \rightarrow\right.$ 0 as $X \rightarrow A$.
If f is differentiable then $\frac{\partial f}{\partial x_{1}} \ldots \frac{\partial f}{\partial x_{n}}$ all exist and the vector G is $\left(\frac{\partial f}{\partial x_{1}} \ldots \frac{\partial f}{\partial x_{n}}\right)$.
We call this $(\operatorname{grad} f(X))_{X=A}$ or $(\nabla f)_{X=A}$.
Thus $f(X)$ is differentiable $\Leftrightarrow \frac{\delta f-\nabla f \delta X}{\|\delta X\|} \rightarrow 0$ as $\delta X \rightarrow 0$.
Theorem 3 If $\frac{\partial f}{\partial x_{1}}, \ldots \frac{\partial f}{\partial f} \partial x_{n}$ are continuous at $X=A$, then $f(X)$ is differentiable at $X=A$.

Proof Suppose $H \neq 0$ and $\|H\|$ is sufficiently small. Consider

$$
\begin{aligned}
& \left.\frac{1}{\|H\|} \right\rvert\, \sum_{r=1}^{n}\left\{f\left(a_{1}+h_{1} \ldots, a_{r}+h_{r}, a_{r+1} \ldots a_{n}\right)\right. \\
& \left.-f\left(a_{1}+h_{1} \ldots a_{r-1}+h_{r-1} a_{r} \ldots a_{n}\right)-h_{r} f_{r}(A)\right\} \mid \\
& \left(\text { This is } \frac{1}{\|H\|}\{f(A+h)-f(A)-A \nabla f\}\right) \\
\leq & \frac{1}{\|H\|}\left|\sum_{r=1}^{n}\left[\left\{f_{r}\left(a_{1}+h_{1} \ldots a_{r-1}+h_{r-1} a_{r}+\theta_{r} f_{r_{1}} a_{r+1}-a_{n}\right)-f_{r}(A)\right\} h_{r}\right]\right| \\
& 0<\theta_{r}<1
\end{aligned}
$$

Let V be the vector with components

$$
f_{r}\left(a_{1}+h_{1}, \ldots a_{r} \theta_{f} h_{r}, a_{r+1} \ldots a_{n}\right)-f_{r} A(r=1,2, \ldots n)
$$

Each component can be made as small as we please, provided only that $\|H\|$ is sufficiently small since $f_{r}(X)$ is continuous at $X+A$. Hence we can make $\|V\|<\varepsilon$ if $\|H\|$ is sufficiently small. The above inequality then gives

$$
\frac{1}{\|H\|}\left|f(A+h)-f(A)-\sum_{r=1}^{n} h_{r} f_{r} A\right| \leq \frac{|V \cdot H|}{\|H\|} \leq\|V\|<\varepsilon
$$

Theorem 4 If $f(X)$ and $g(X)$ are both differentiable at $X+A$, then so are $f(X) \pm g(X), f(X) \cdot g(X)$ and, provided $g(A) \mid n e q 0, \frac{f(X)}{g(X)}$.

$$
\left.\begin{array}{c}
\nabla(f \pm g)=\nabla f \pm \nabla g \\
\nabla(f g)=f \nabla g+g \nabla f \\
\nabla \frac{f}{g}=\frac{1}{g} \nabla f-\frac{f}{g^{2}} \nabla g
\end{array}\right\} \text { at } X=A
$$

Proof of (iii) Take $f \equiv 1$ and suppose $g(A) \neq 0$. Consider

$$
\begin{aligned}
& \frac{1}{\|H\|}\left|\frac{1}{g(A+h)}-\frac{1}{g(A)}-\left\{\frac{\nabla g_{A}}{g^{2}(A)}\right\} \cdot H\right| \\
= & \frac{1}{\|H\|}\left|\frac{g(A)\left\{g(A)-g(A+H)+\nabla g_{A} \cdot H\right\}+\{g(A+H)-g(A)\}\left\{\nabla g_{A} \cdot H\right\}}{g^{2}(A) g(A+H)}\right| \\
\leq & \left|\frac{g(A+h)-g(A)-\nabla g \cdot H}{\|H\|}\right| \frac{1}{g(A) g(A+H)}+\frac{|g(A+H)-g(A)|}{\left|g^{2}(A) \cdot g(A+H)\right|}\|\nabla g\|
\end{aligned}
$$

using $\mid \nabla g . H$
$l e q\|\nabla g\|\|H\| \rightarrow 0$ as $\|H\| \rightarrow 0$.
Theorem 5 Function of a function rule.
Let ${ }^{(1)} f(X),{ }^{(2)} f(X), \ldots{ }^{(n)} f(X)$ be differentiable at $X=A$. Let $g(Y)=$ $g\left(y_{1} \ldots y_{m}\right)$ be differentiable at $Y=B$ where $B=F(A)=\left(^{(1)} f(A) \ldots{ }^{(m)} f(A)\right)$.
Then $h(X)=g(F(x))$ is differentiable at $X+A$ and

$$
\left(\begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{n}(X)
\end{array}\right)_{X=A}=\left(\begin{array}{c}
{ }^{(1)} f_{1}(X) \ldots{ }^{(m)} f_{1}(X) \\
\\
{ }^{1} f_{n}(X) \ldots{ }^{m} f_{n}(X)
\end{array}\right)_{X=A}\left(\begin{array}{c}
g_{1}(Y) \\
\vdots \\
g_{m}(Y)
\end{array}\right)_{Y=B}
$$

Proof Let RHS of the expression be D. Let $\left(g_{1}(Y) \ldots g_{m}(Y)\right)^{T}=G^{\prime}$.
We have the following results

1. Since $f(X)$ is differentiable at $X+A \frac{F(A+H)-f(A)}{\|H\|}$ is bounded for $0<\|H\|<\delta$.
Thus, if each component of $F(X)$ is differentiable at $X=A \frac{\|F(A+H)-F(A)\|}{\|H\|}$ is bounded in $0<\|H\|<\delta$
2. Since $g(Y)$ is differentiable at $Y+B$

$$
g(B+\Omega)=g(B)-G^{\prime} \cdot \Omega=\varepsilon(\omega)\|\Omega\|
$$

where $\varepsilon(\Omega) \rightarrow 0$ as $\|\omega\| t o 0$.
Consider

$$
\begin{aligned}
& \frac{1}{\|H\|}|g(F(A+H))-g(F(A))-D \cdot H| \\
= & \left.\frac{1}{\|H\|} \right\rvert\, g(F(A+H))-g(F(A))-G^{\prime} \cdot(F(A+H)-F(A)) \\
& +G^{\prime} \cdot(F(A+H)-F(A))-D \cdot H \mid \\
\leq & \frac{1}{\|H\|}\left|g(B+\Omega)-g(B)-G^{\prime} \cdot \Omega\right|+\frac{1}{\|H\|}\left|G^{\prime} \cdot(F(A+H)-F(A))-D \cdot H\right|
\end{aligned}
$$

(writing $F(A)+B F(A+H)-F(A)=\Omega$.

First term $=\varepsilon(\Omega) \frac{\|\Omega\|}{\|H\|}$ by (2) where $\varepsilon \rightarrow 0$ as $\Omega \rightarrow 0$.
By (1) $\frac{\|\Omega\|}{\|H\|}$ is bounded for $0<\|H\|<\delta$ also since $\Omega \rightarrow 0$ as $H \rightarrow$ $0, \varepsilon(\Omega) \rightarrow 0$ as $H \rightarrow 0$.
Second term

$$
\begin{aligned}
& =\frac{1}{\|H\|}\left|\sum_{r=1}^{m} g_{r}(B)\left\{{ }^{(r)} f(A+H)-^{(r)} f(A)-H \cdot \nabla^{r} f(A)\right\}\right| \\
& \leq \sum_{r=1}^{n}\left|g_{r}(B)\right| \frac{1}{\|H\|}\left|{ }^{(r)} f(A+H)-{ }^{(r)} f(A)-H \cdot \nabla^{r} f(A)\right|
\end{aligned}
$$

$\rightarrow 0$ as $\|H\| \mid t o 0$.
Hence $\left.\frac{1}{\|H\|} \right\rvert\, g(F(A+H))-g(F(A)-D . H \mid \rightarrow 0$ as $\|H \mid\| t o 0$. Hence the result.

Corollary In The special case when $n=1$ we get, when $h(x)=g(F(X))$ that

$$
h^{\prime}(x)=F^{\prime}(a) \cdot(\nabla g)_{B}
$$

Theorem 6 First Mean Value Theorem Suppose $d(X)$ is differentiable at all points of the open line segment $(A, A+H)$ and continuous on the closed segment. Then for some

$$
g(A+H)-g(A)=H \cdot \nabla g(A+\theta H)
$$

Proof Suppose $0<t_{0}<1$. Then $h(t)=g(A+t H)$ is differentiable at $t=t_{0}$, since $g(X)$ is differentiable at $X=A+t_{0} H$ and so are $a_{r}+t_{0} h_{r} r=$ $1, \ldots, n$.

Furthermore

$$
\begin{aligned}
h^{\prime}(t) & =\left\{\frac{d}{d t} A+t H\right\} \cdot \nabla g(A+t H) \text { at } t=t_{0} \\
& =H \cdot \nabla g(A+t H) t=t_{0}
\end{aligned}
$$

And $h(t)$ is continuous for t in [01] hence by $\operatorname{MVT} h(1)-h(0)-h^{\prime}(\theta$ for some $\theta \mid 0<\theta<1$. Hence

$$
g(A+H)-g(A)=H \cdot \nabla g(A+\theta H)
$$

Theorem 7 Taylor's Theorem Suppose that the function $f(X)$ is such that all its partial derivatives of (total) order $u-1$ are continuous on the closed line segment $[A, A+H]$, and differentiable on the open line segment $(A, A+H)$, then for some θ with $0<\theta<1$, we have

$$
\begin{aligned}
f(A+H) & =\left\{\sum_{r=0}^{u-1} \frac{1}{r!} \Omega^{r} f(X)\right\}_{X=A}+\left\{\frac{1}{u!} \Omega^{U} f(X)\right\}_{X=A+\theta H} \\
\Omega & =H \cdot \nabla=h_{1} \frac{\partial}{\partial x_{1}}+\ldots+h_{n} \frac{\partial}{\partial x_{n}}
\end{aligned}
$$

Proof Write $h(t)=f(A+t H)$
By induction on r we have

$$
\frac{d^{r}}{d t^{r}} h(t)=\left[\Omega^{r} f(X)\right]_{X=A+t H}\left\{\begin{array}{c}
r=0,1, \ldots u-1 \\
0 \leq t \leq 1 \\
r=u 0<t<1
\end{array}\right.
$$

By Taylor's theorem for a function of one variable

$$
h(1)=\sum_{r=0}^{u-1} \frac{1}{r!} h^{(r)}(0)+\frac{1}{U!} h^{(n)} \theta 0<\theta<1
$$

Hence the result.
Maxima and Minima $f(X)$ has a strict maximum at $X=A$ means $\exists \varepsilon>$ $0 \mid$ in $0<(X-A \mid<\varepsilon$ we have $f(A)>f(X)$.
By a weak minimum we mean that in $0<\left|X_{A}\right|<\varepsilon \mid f(A) \geq f(X)$.
Theorem 8 Suppose $f(X)$ has a maximum or a minimum at $X+A$. If $f(X)$ has first order partial derivatives at $X=A$ then $(\nabla f)_{A}=0$ i.e. $f_{r}(A)=$ $0 r=1,2, \ldots, n$. If $f(X)$ has second order derivatives continuous in a neighbourhood of A, then the quadratic form $\sum_{i j} h_{i} h_{j} f_{i j}(A)$ in $h_{1} \ldots h_{m}$ is negative or positive semi-definite.

Proof Consider $f\left(x_{1}, x_{2} \ldots a_{n}\right)=\phi\left(x_{1}\right)$. This, as a function of x_{1}, has a maximum or minimum at $x_{1}=a_{1}$ therefore by the theorem for a function of one variable $\phi^{\prime}\left(x_{1}\right)=\frac{\partial f}{\partial ; x_{1}}=0$. Similarly for other variables therefore $\nabla f_{A}=0$.

Suppose that the quadratic form is not semi-definite. Then $\exists U=$ ($u_{1} \ldots u_{n}$) such that

$$
\sum_{i j} f_{i j} u_{i} u_{j}>0
$$

and $V=\left(v_{1} \ldots v_{n}\right)$ such that

$$
\sum_{i j} f_{i j} A v_{i} v_{j}<0
$$

Let $H^{1}=\left(u_{1} h \ldots u_{n} h\right)$.
Using Taylor's Theorem

$$
f(A+H @)=f(A)+\frac{h^{2}}{2!} \sum_{i j} f_{i j}\left(A+\theta^{1} H^{1}\right) u_{i} u_{j}
$$

The linear terms vanishing as $\nabla f=0$
Let $H^{2}=\left(v_{1} h \ldots v_{n} h\right)$

$$
f\left(A+H^{2}\right)=f(A)+\frac{h^{2}}{2!} \sum_{i j} f_{i j}\left(A+\theta^{1} H^{2}\right) v_{i} v_{j}
$$

Since the second derivatives are continuous, $\exists \delta>0 \mid$ for $0<h<\delta$

$$
\begin{aligned}
f\left(A+H^{1}\right) & =f(A)+\left(\phi^{1}\right)^{2} \\
f\left(A+H^{2}\right) & =f(A)-\left(\phi^{2}\right)^{2}
\end{aligned}
$$

We get neither a maximum nor a minimum since in any sphere of radius ε about A, we can choose h such that $\left|H^{1}\right|<\varepsilon\left|H^{2}\right|<\varepsilon$.
item[Theorem 9] Suppose that $f(x)$ has second derivatives which are continuous in the neighbourhood of A. Suppose that $\nabla f_{A}=0$ and that the quadratic form $\sum_{i j} h_{i} h_{j} f_{i j}(A)$ is negative/positive definite in $h_{1} \ldots h_{n}$. Then $f(X)$ has maximum/minimum at $X=A$.

Proof Given $\sum_{i j} f_{i j}(A) h_{i} h_{j}$ positive definite, and the second derivatives are continuous. Then $\exists \delta>0$ for each X satisfying $|X-A|<\delta$ the quadratic form $\sum_{i j} f_{i j}(X) h_{i} h_{j}$ is also a positive definite form.
[Using the determinant test, as all the determinants are continuous functions of X.]
Using Taylor's Theorem,

$$
f(X)=f(A)+\frac{1}{2} \sum_{I j} f_{i j}(A+\theta H) h_{i} h_{j}>f(A)
$$

since the quadratic form is positive definite at each point in the sphere.

