REAL ANALYSIS UNIFORM CONTINUITY

Definition f(x) is said to be uniformly continuous in a set $s \Leftrightarrow$, given $\varepsilon > 0 \exists \delta = \delta(\varepsilon) ||f(x_1) - f(x_2)| < \varepsilon$ whenever $|x_1 - x_2| < \delta$ and $x_1, x_2 \in S$.

Theorem Suppose f(x) is continuous in [a, b] relative to [a, b], then f(x) is uniformly continuous in [a, b].

Note: False for open intervals. To prove uniform continuity it suffices to prove the following: Given $\varepsilon > 0 \exists$ a finite subdivision of [a, b] oscillation $f(x) < \varepsilon$ $x \in [x_{\nu-1}x_{\nu}]$

or: if M_{ν} , m_{ν} are the upper and lower bounds of f(x) in $[x_{\nu-1}x_{\nu}]$, we have

$$M_{\nu} - m_{\nu} < \varepsilon$$
 $\nu = 1, 2, \dots, n$

First Proof (using Bisection)

Suppose the result is false. Then $\exists \varepsilon_0$ so that for this ε_0 , there is no subdivision of the required type.

We call an interval a good interval if $bd - \underline{bd} < \varepsilon_0$, and bad otherwise.

Subdivide $[a\ b]$ into two equal closed intervals $\left[a,\frac{a+b}{2}\right],\left[\frac{a+2}{2},b\right]$.

At least one of these is bad.

We define J_1 to be the bad interval if there is only one, or the left hand one if there is a choice. Now subdivide J_1 into two equal intervals as before, and again define J_2 to be the bad (or left hand) subinterval of J_1 . Continue this process (which cannot terminate). We obtain a sequence of bad intervals $J_1 = [a_1 \ b_1], \ J_2 = [a_2 \ b_2] \dots$ where $|a_n - b_n| = \frac{b-a}{2^n}$.

Now $a_1 \le a_2 \le \ldots \le b$

Hence $\exists l \in [a, b] | a_n \to l$; and $b_n \to L$ as $n \to \infty$.

But f(x) is continuous at l relative to $[a\ b]$. Hence $\exists \delta > 0$, such that, if we write $I_{\delta} = [l - \delta, l + \delta] \cap [a\ b]$ and $m_{\delta} = \underline{bd}_{x \in I_{\delta}} f\ M_{\delta} = \overline{bd}_{x \in I_{\delta}} f(x)$, we have $M_{\delta} - m_{\delta} < \varepsilon_{0}$.

But $\exists N | J_N$ is contained in I_{δ} . This gives a contradiction since I_{δ} is good, J_N is bad.

Second Proof Given $\varepsilon > 0$. Consider any pint x in $[a \ b]$.

$$\exists \delta ||f(y) - f(x)| < \frac{1}{2}\varepsilon$$
 whenever $y \in (x - \delta, x + \delta) - 1$.

Let us define f(y) = f(a) for y < a and f(y) = f(b) for y > b. Then (1) defines a covering of $[a \ b]$.

By the Heine Borel theorem we con find a finite covering subset S of open intervals.

$$I_{\nu} = (x_{\nu} \ y_{\nu}) \ \nu = 1, \dots, n \ x_{\nu} < y_{\nu}$$

If we take all the points x_{ν} y_{ν} ($\nu=1,\ldots,n$ and select those which lie in $[a\ b]$, together with a and b, they define a finite subdivision of $[a\ b]$, $a=t_0 < t_1 < \ldots < t_m = b$. Consider any point in one of these intervals of the subdivision. Each interval of the subdivision is covered by one interval of S defined by 1. Therefore in this interval, $[t_{\nu-1}\ t_n u]$ which is covered by $(x_{\mu}\ y)\mu$) $\{x_{\mu} < t_{\nu-1} < t_{\nu} < v_{\mu}\}\ |f(x) - f(y)| < \frac{1}{2}\varepsilon$ for all x in the interval therefore $|M_{\nu} - f(y)| < \frac{1}{2}\varepsilon$ and $|m_{\nu} - f(y)| < \frac{1}{2}\varepsilon$ therefore

$$M_{\nu}-m_{\nu}<\varepsilon \ \nu=1,2,\ldots,n.$$

Hence the result.

Third Proof Suppose false. Then $\exists \varepsilon_0 > 0 |$ there is no δ of the required type.

Choose 2 points $x_1y_1||x_1-y_1| \leq 1$ and $|f(x_1)-f(y_1)| \geq \varepsilon_0$

Choose 2 points $x_2y_2||x_2-y_2| \leq \frac{1}{2}$ and $|f(x_2)-f(y_2)| \geq \varepsilon_0$

:

Choose 2 points $x_n y_n ||x_n - y_n| \le \frac{1}{n}$ and $|f(x_n) - f(y_n)| \ge \varepsilon_0$

The choice is always possible, for otherwise $\frac{1}{n}$ would be a possible δ .

The sequence $x_1, x_2, x_3...$ is bounded since each $x_n \in [a \ b]$. Hence it contains a convergent subsequence $x_{r_1}, x_{r_2}... \to l$ as $n \to \infty$ where $l \in [a \ b] \ y_{r_1}, y_{r_2}... \to l$ as $x_{r_1} - y_r \to 0$ as $r \to \infty$.

Since f(x) is continuous \exists an interval I about l—for all x in $I \cap [a \ b] = J$, $|f(x) - f(l)| < \frac{1}{2}\varepsilon_0$.

But $\exists N | x_N \text{ and } y_N \in J$

$$|f(x_N) - f(l)| < \frac{1}{2}\varepsilon_0 |f(y_N) - f(l)| < \frac{1}{2}\varepsilon_0 \Rightarrow |f(x_N) - f(Y_N)| < \varepsilon_0$$

Which is a contradiction hence the result.

We can use Uniform Continuity to prove that a continuous function is Riemann integrable. We can find a subdivision \triangle such that each interval $M_{\nu} - m_{\nu} < \frac{\varepsilon}{b-a}$, since f(x) is uniformly continuous. Then

$$\sum_{\nu=1}^{n} \delta_{\nu} (M_{\nu} - m_{\nu}) < \sum_{\nu=1}^{n} \delta_{\nu} \frac{\varepsilon}{b - a} = \varepsilon$$

Therefore

$$S_{\triangle} - s_{\triangle} < \varepsilon$$
.