REAL ANALYSIS
UNIFORM CONTINUITY

Definition f(x) is said to be uniformly continuous in a set s <, given € >
039 = 6(e)||f(x1) — f(x2)| < € whenever |x; — xs| < § and x1, 29 € S.

Theorem Suppose f(z) is continuous in [a, b] relative to [a, b], then f(x) is
uniformly continuous in [a, b].

Note: False for open intervals. To prove uniform continuity it suffices to
prove the following: Given £ > 03 a finite subdivision of [a, b]| oscilla-
tion f(z) < ez € [r,-17,]

or: if M,,, m, are the upper and lower bounds of f(z) in [z,_1z,], we
have

M,—m,<e v=12....n

First Proof (using Bisection)

Suppose the result is false. Then degy so that for this ey, there is no
subdivision of the required type.

We call an interval a good interval if bd — bd < €y, and bad otherwise.
Subdivide [a b] into two equal closed intervals {a, “T*b} , [“T“, b}.
At least one of these is bad.

We define J; to be the bad interval if there is only one, or the left hand
one if there is a choice. Now subdivide J; into two equal intervals as
before, and again define .J; to be the bad (or left hand) subinterval of .J;.
Continue this process (which cannot terminate). We obtain a sequence
of bad intervals J; = [ay b1], Jo = [as bo]. .. where |a, — b,| = &2

Now a; <ay <...<b
Hence 3l € [a, b]|a, — [; and b, — L as n — oo.

But f(x) is continuous at [ relative to [a b]. Hence 3§ > 0, such that,
if we write Is = [l — 0,0+ 6] N [a b] and ms = bd,er, f Ms = bdyers f (),
we have Ms — ms < gp.

But IN|Jy is contained in [;5. This gives a contradiction since Ij is
good, Jy is bad.

Second Proof Given ¢ > 0. Consider any pint z in [a b].
36||f(y) — f(z)| < 3¢ whenever y € (z — 6,z + &) — 1.
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Let us define f(y) = f(a) for y < a and f(y) = f(b) for y > b. Then
(1) defines a covering of [a b].

By the Heine Borel theorem we con find a finite covering subset S of
open intervals.

IL=(x,y) v=1...,n z,<y,

If we take all the points z, y, (v = 1,...,n and select those which
lie in [a b], together with a and b, they define a finite subdivision of
[ab], a =1ty <ty <...<t, => Consider any point in one of these
intervals of the subdivision. Each interval of the subdivision is covered
by one interval of S defined by 1. Therefore in this interval, [t, 1 t,u]
which is covered by (z, y)p){z, < t,-1 <t, <wv.} |f(z) — f(y)| < ie
for all z in the interval therefore M, — f(y)| < 3¢ and |m, — f(y)| < ie
therefore
M,—m,<e v=12...,n.

Hence the result.

Third Proof Suppose false. Then ey > 0] there is no ¢ of the required
type.
Choose 2 points z1y1|[z1 — y1| < 1Tand |f(z1) — f(y1)] > €0

Choose 2 points zays[z2 — g] < & and | f(w2) = F(y2)] = &

Choose 2 pOintS xnyonn - yn| S % and ’f(xn) - f(yn)‘ Z €o
1

The choice is always possible, for otherwise .- would be a possible 4.

The sequence z1,x9, x5 ... is bounded since each x,, € [a b]. Hence it
contains a convergent subsequence ¥, ,%,,... — | as n — 0o where
L€lab Yryy Ypy ... — las x,, —y, — 0 asr — oo.

Since f(x) is continuous 3 an interval I about [—for all x in I'N[a b] =
T, |f(x) = fI)] < 350
But IN|zy and yy € J

F(ew) = T < e [Fw) = FO] < o0 = 1 (an) = V)] < e

Which is a contradiction hence the result.



We can use Uniform Continuity to prove that a continuous function is Rie-
mann integrable. We can find a subdivision A such that each interval

M, —m, < 3=, since f(z) is uniformly continuous. Then
Z(S,,(M,,—m,,) < 25,, c =c
v=1 v=1 b—

Therefore

SA — sa < €.



