REAL ANALYSIS UNIFORM CONTINUITY

Definition $f(x)$ is said to be uniformly continuous in a set $s \Leftrightarrow$, given $\varepsilon>$ $0 \exists \delta=\delta(\varepsilon)| | f\left(x_{1}\right)-f\left(x_{2}\right) \mid<\varepsilon$ whenever $\left|x_{1}-x_{2}\right|<\delta$ and $x_{1}, x_{2} \in S$.

Theorem Suppose $f(x)$ is continuous in $[a, b]$ relative to $[a, b]$, then $f(x)$ is uniformly continuous in $[a, b]$.

Note: False for open intervals. To prove uniform continuity it suffices to prove the following: Given $\varepsilon>0 \exists$ a finite subdivision of $[a, b] \mid$ oscillation $f(x)<\epsilon x \in\left[x_{\nu-1} x_{\nu}\right]$
or: if M_{ν}, m_{ν} are the upper and lower bounds of $f(x)$ in $\left[x_{\nu-1} x_{\nu}\right]$, we have

$$
M_{\nu}-m_{\nu}<\varepsilon \quad \nu=1,2, \ldots, n
$$

First Proof (using Bisection)
Suppose the result is false. Then $\exists \varepsilon_{0}$ so that for this ε_{0}, there is no subdivision of the required type.
We call an interval a good interval if $b d-\underline{b d}<\varepsilon_{0}$, and bad otherwise. Subdivide $[a b]$ into two equal closed intervals $\left[a, \frac{a+b}{2}\right],\left[\frac{a+2}{2}, b\right]$.
At least one of these is bad.
We define J_{1} to be the bad interval if there is only one, or the left hand one if there is a choice. Now subdivide J_{1} into two equal intervals as before, and again define J_{2} to be the bad (or left hand) subinterval of J_{1}. Continue this process (which cannot terminate). We obtain a sequence of bad intervals $J_{1}=\left[\begin{array}{ll}a_{1} & b_{1}\end{array}\right], J_{2}=\left[a_{2} b_{2}\right] \ldots$ where $\left|a_{n}-b_{n}\right|=\frac{b-a}{2^{n}}$.
Now $a_{1} \leq a_{2} \leq \ldots \leq b$
Hence $\exists l \in[a, b] \mid a_{n} \rightarrow l$; and $b_{n} \rightarrow L$ as $n \rightarrow \infty$.
But $f(x)$ is continuous at l relative to $[a b]$. Hence $\exists \delta>0$, such that,
 we have $M_{\delta}-m_{\delta}<\varepsilon_{0}$.

But $\exists N \mid J_{N}$ is contained in I_{δ}. This gives a contradiction since I_{δ} is good, J_{N} is bad.

Second Proof Given $\varepsilon>0$. Consider any pint x in $[a b]$.
$\exists \delta\left||f(y)-f(x)|<\frac{1}{2} \varepsilon\right.$ whenever $y \in(x-\delta, x+\delta)-1$.

Let us define $f(y)=f(a)$ for $y<a$ and $f(y)=f(b)$ for $y>b$. Then (1) defines a covering of $[a b]$.

By the Heine Borel theorem we con find a finite covering subset S of open intervals.

$$
I_{\nu}=\left(x_{\nu} y_{\nu}\right) \quad \nu=1, \ldots, n \quad x_{\nu}<y_{\nu}
$$

If we take all the points $x_{\nu} y_{\nu}(\nu=1, \ldots, n$ and select those which lie in $[a b]$, together with a and b, they define a finite subdivision of [$a b], a=t_{0}<t_{1}<\ldots<t_{m}=b$. Consider any point in one of these intervals of the subdivision. Each interval of the subdivision is covered by one interval of S defined by 1 . Therefore in this interval, $\left[t_{\nu-1} t_{n} u\right]$ which is covered by $\left.\left(x_{\mu} y\right) \mu\right)\left\{x_{\mu}<t_{\nu-1}<t_{\nu}<v_{\mu}\right\}|f(x)-f(y)|<\frac{1}{2} \varepsilon$ for all x in the interval therefore $\left|M_{\nu}-f(y)\right|<\frac{1}{2} \varepsilon$ and $\left|m_{\nu}-f(y)\right|<\frac{1}{2} \varepsilon$ therefore

$$
M_{\nu}-m_{\nu}<\varepsilon \quad \nu=1,2, \ldots, n
$$

Hence the result.
Third Proof Suppose false. Then $\exists \varepsilon_{0}>0 \mid$ there is no δ of the required type.
Choose 2 points $x_{1} y_{1}| | x_{1}-y_{1} \mid \leq 1$ and $\left|f\left(x_{1}\right)-f\left(y_{1}\right)\right| \geq \varepsilon_{0}$
Choose 2 points $x_{2} y_{2}| | x_{2}-y_{2} \left\lvert\, \leq \frac{1}{2}\right.$ and $\left|f\left(x_{2}\right)-f\left(y_{2}\right)\right| \geq \varepsilon_{0}$
\vdots
Choose 2 points $x_{n} y_{n}| | x_{n}-y_{n} \left\lvert\, \leq \frac{1}{n}\right.$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0}$
The choice is always possible, for otherwise $\frac{1}{n}$ would be a possible δ.
The sequence $x_{1}, x_{2}, x_{3} \ldots$ is bounded since each $x_{n} \in[a b]$. Hence it contains a convergent subsequence $x_{r_{1}}, x_{r_{2}} \ldots \rightarrow l$ as $n \rightarrow \infty$ where $l \in\left[\begin{array}{ll}a & b\end{array}\right] y_{r_{1}}, y_{r_{2}} \ldots \rightarrow l$ as $x_{r_{1}}-y_{r} \rightarrow 0$ as $r \rightarrow \infty$.
Since $f(x)$ is continuous \exists an interval I about l-for all x in $I \cap[a b]=$ $J,|f(x)-f(l)|<\frac{1}{2} \varepsilon_{0}$.
But $\exists N \mid x_{N}$ and $y_{N} \in J$

$$
\left|f\left(x_{N}\right)-f(l)\right|<\frac{1}{2} \varepsilon_{0}\left|f\left(y_{N}\right)-f(l)\right|<\frac{1}{2} \varepsilon_{0} \Rightarrow\left|f\left(x_{N}\right)-f\left(Y_{N}\right)\right|<\varepsilon_{0}
$$

Which is a contradiction hence the result.

We can use Uniform Continuity to prove that a continuous function is Riemann integrable. We can find a subdivision \triangle such that each interval $M_{\nu}-m_{\nu}<\frac{\varepsilon}{b-a}$, since $f(x)$ is uniformly continuous. Then

$$
\sum_{\nu=1}^{n} \delta_{\nu}\left(M_{\nu}-m_{\nu}\right)<\sum_{\nu=1}^{n} \delta_{\nu} \frac{\varepsilon}{b-a}=\varepsilon
$$

Therefore

$$
S_{\triangle}-s_{\triangle}<\varepsilon .
$$

