
REAL ANALYSIS
UNIFORM CONTINUITY

Definition f(x) is said to be uniformly continuous in a set s⇔, given ε >

0∃δ = δ(ε)||f(x1)− f(x2)| < ε whenever |x1 − x2| < δ and x1, x2 ∈ S.

Theorem Suppose f(x) is continuous in [a, b] relative to [a, b], then f(x) is
uniformly continuous in [a, b].

Note: False for open intervals. To prove uniform continuity it suffices to
prove the following: Given ε > 0∃ a finite subdivision of [a, b]| oscilla-
tion f(x) < ε x ∈ [xν−1xν ]

or: if Mν , mν are the upper and lower bounds of f(x) in [xν−1xν ], we
have

Mν −mν < ε ν = 1, 2, . . . , n

First Proof (using Bisection)

Suppose the result is false. Then ∃ε0 so that for this ε0, there is no
subdivision of the required type.

We call an interval a good interval if bd− bd < ε0, and bad otherwise.

Subdivide [a b] into two equal closed intervals
[

a, a+b
2

]

,
[

a+2

2
, b

]

.

At least one of these is bad.

We define J1 to be the bad interval if there is only one, or the left hand
one if there is a choice. Now subdivide J1 into two equal intervals as
before, and again define J2 to be the bad (or left hand) subinterval of J1.
Continue this process (which cannot terminate). We obtain a sequence
of bad intervals J1 = [a1 b1], J2 = [a2 b2] . . . where |an − bn| =

b−a
2n
.

Now a1 ≤ a2 ≤ . . . ≤ b

Hence ∃l ∈ [a, b]|an → l; and bn → L as n→∞.

But f(x) is continuous at l relative to [a b]. Hence ∃δ > 0, such that,
if we write Iδ = [l− δ, l+ δ]∩ [a b] and mδ = bdx∈Iδf Mδ = bdx∈Iδf(x),
we have Mδ −mδ < ε0.

But ∃N |JN is contained in Iδ. This gives a contradiction since Iδ is
good, JN is bad.

Second Proof Given ε > 0. Consider any pint x in [a b].

∃δ||f(y)− f(x)| < 1

2
ε whenever y ∈ (x− δ, x+ δ)− 1.
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Let us define f(y) = f(a) for y < a and f(y) = f(b) for y > b. Then
(1) defines a covering of [a b].

By the Heine Borel theorem we con find a finite covering subset S of
open intervals.

Iν = (xν yν) ν = 1, . . . , n xν < yν

If we take all the points xν yν (ν = 1, . . . , n and select those which
lie in [a b], together with a and b, they define a finite subdivision of
[a b], a = t0 < t1 < . . . < tm = b. Consider any point in one of these
intervals of the subdivision. Each interval of the subdivision is covered
by one interval of S defined by 1. Therefore in this interval, [tν−1 tnu]
which is covered by (xµ y)µ){xµ < tν−1 < tν < vµ} |f(x)− f(y)| < 1

2
ε

for all x in the interval therefore |Mν−f(y)| < 1

2
ε and |mν−f(y)| < 1

2
ε

therefore
Mν −mν < ε ν = 1, 2, . . . , n.

Hence the result.

Third Proof Suppose false. Then ∃ε0 > 0| there is no δ of the required
type.

Choose 2 points x1y1||x1 − y1| ≤ 1 and |f(x1)− f(y1)| ≥ ε0

Choose 2 points x2y2||x2 − y2| ≤
1

2
and |f(x2)− f(y2)| ≥ ε0

...

Choose 2 points xnyn||xn − yn| ≤
1

n
and |f(xn)− f(yn)| ≥ ε0

The choice is always possible, for otherwise 1

n
would be a possible δ.

The sequence x1, x2, x3 . . . is bounded since each xn ∈ [a b]. Hence it
contains a convergent subsequence xr1 , xr2 . . . → l as n → ∞ where
l ∈ [a b] yr1 , yr2 . . .→ l as xr1 − yr → 0 as r →∞.

Since f(x) is continuous ∃ an interval I about l—for all x in I ∩ [a b] =
J, |f(x)− f(l)| < 1

2
ε0.

But ∃N |xN and yN ∈ J

|f(xN)− f(l)| <
1

2
ε0 |f(yN)− f(l)| <

1

2
ε0 ⇒ |f(xN)− f(YN)| < ε0

Which is a contradiction hence the result.
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We can use Uniform Continuity to prove that a continuous function is Rie-
mann integrable. We can find a subdivision 4 such that each interval
Mν −mν < ε

b−a
, since f(x) is uniformly continuous. Then

n
∑

ν=1

δν(Mν −mν) <
n

∑

ν=1

δν
ε

b− a
= ε

Therefore

S4 − s4 < ε.
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