ANALYSIS REAL VARIABLE SEQUENCES

A monotonic increasing sequence either converges to a finite limit or diverges to $= \infty$.

Proof Let S be the set of numbers in the sequence $\{a_n\}$.

Case (i) S has no upper bound.

Given any $X, \exists n_0 / a_{n_0} > X \Rightarrow a_n > X$ for $n \ge n_0$.

This means that the sequence diverges to $+\infty$.

Case (ii) S has an upper bound; $\overline{bd}a_n = a$.

Given $\varepsilon > 0 \exists n_1 / a_{n_1} > a - \varepsilon \Rightarrow a - \varepsilon < a_n \le a \text{ for } n \ge n_1.$

This means that the sequence converges to a.

Upper and lower limits

Definition

$$\frac{\lim_{n\to\infty} \sup a_n}{\lim_{n\to\infty} a_n} = \lim_{n\to\infty} \sup_{n\to\infty} \sup_{m\geq n} a_m$$

$$\left| \lim_{n \to \infty} \inf a_n \atop \underline{\lim}_{n \to \infty} a_n \right| = \lim_{n \to \infty} \inf f_{m \ge n} a_m$$

Justification (for \limsup Case (i) Suppose S has no upper bound.

i.e $sup_{m\geq 1}a_m = +\infty$

Then $\sup_{m\geq n} a_m = +\infty$ for all n.

In these circumstances we say that $\overline{\lim}_{n\to\infty} a_n = +\infty$

Case (ii) Now suppose S has an upper bound. Write $\sup_{m\geq n} a_m = A^{(n)}$

 $A^{(1)}A^{(2)}$... is a monotonic decreasing sequence. If this sequence is bounded below, then it converges to a number Λ , and $\overline{\lim}_{n\to\infty}a_n=\Lambda$, and if not, $\overline{\lim}_{n\to\infty}a_n=-\infty$

Subject to the conventions we have introduced $\overline{\lim} a_n$ always exists.

Suppose $\overline{\lim} a_n = \Lambda$ and suppose Λ finite. Then Λ has the following property (P)

(P) For every $\varepsilon > 0$

- (i) $a_n > \Lambda \varepsilon$ for an infinity of n
- (ii) $a_n > \Lambda + \varepsilon$ for at most a finite number of n.

Proof (i) If \exists only a finite number of $n/a_n > \Lambda - \varepsilon$ then $\Rightarrow \overline{\lim} a_n \leq \Lambda - \varepsilon$.

(ii) If \exists an infinity of $n/a_n > \Lambda + \varepsilon \Rightarrow \overline{\lim} a_n \geq \Lambda + \varepsilon$

We may define Λ as the upper bound of the set of limit points of $\{a_n\}$.

Theorem 1

$$\underline{\lim} a_n \le \overline{\lim} a_n$$

Proof

$$inf_{m\geq n}a_m \le sup_{m\geq n}a_m$$

Let $n \to \infty$ and the result follows.

Theorem 2

$$\lim_{n \to \infty} a_n = a \Leftrightarrow \underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = a$$

Proof (1) Suppose that $\lim_{n\to\infty} a_n = a$

Then given $\varepsilon>0, \exists N=N(\varepsilon)/\ |a_m-a|<\varepsilon$ for $m\geq n.$ Hence foe $n\geq N$

$$a - \varepsilon < inf_{m \ge n} a_m \le sup_{m \ge n} a_m < a + \varepsilon$$

Hence
$$a - \varepsilon < \lambda \le \Lambda < a + \varepsilon < a + \varepsilon \Rightarrow \lambda = \Lambda$$

(2) Suppose $\underline{\lim}_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n = a$ Then, given $\varepsilon > 0 \; \exists N = N(\varepsilon)/ \; \text{ for } n \geq N$,

$$a - \varepsilon \le inf_{m \ge n} a_m \le sup_{m \ge n} a_m \le a + \varepsilon$$

Hence for $m \geq N$ we have

$$|a_m - a| \le \varepsilon$$

Theorem 3 It is possible to choose a subsequence $b_1, b_1 \dots$ from $(a_1, a_2 \dots, / \lim_{n \to \infty} b_n)$ exists $= \overline{\lim_{n \to \infty} a_n}$

Proof (i) $\Lambda = +\infty$

(ii)
$$\Lambda = -\infty$$

(iii) Λ finite

Let I_n be the interval $\left[\Lambda - \frac{1}{n}, \Lambda + \frac{1}{n}\right]$

¿From property (P);

$$\exists r_1/\ a_{r_1} \in I_1$$
 Write $b_1 = a_{r_1}$

 $\exists r_2 > r_1 / \ a_{r_2} \in I_2 \quad \text{Write } b_2 = a_{r_2}$

Continue the process, and we obtain a subsequence of the required type.

- **Corollary** A bounded sequence of points in n-dimensional Euclidean space contains a convergent subsequence (In particular the result is true for sequences of real and complex numbers $[R_1\&R_2]$
- **Example** Every real sequence contains either a strictly monotonic increasing subsequence, or a weakly monotonic decreasing subsequence.
- Theorem 4 The General (Cauchy) Principle of Convergence The following condition (c) is a necessary and sufficient condition for $\lim_{n\to\infty} a_n$ to exist.

(c) Given
$$\varepsilon > 0 \exists N = N(\varepsilon) / |a_m - a_n| < \varepsilon$$
 whenever $m > n \ge N$.

Proof Necessity Suppose $\lim_{n\to\infty} a_n = a$

$$\exists N/ |a_s - a| < \frac{1}{2}\varepsilon$$
 for $s \ge N$ therefore for $m > n > N$

$$|a_m - a_n| \le |a_m - a| + |a - a_n| < \varepsilon$$

Sufficiency First Proof.

(i) We prove the sequence bounded. For $m > n \ge N(1)$ we have

$$|a_m - a_n| < 1$$

Choose a fixed $n_1 \ge N(1)$. Then $|a_m| < |a_{n_1}| + 1$ for $m \ge n_1$. Therefore $\{a_m\}$ is bounded.

(ii) We show that, given $\varepsilon > 0$,

$$\overline{\lim} a_n - \underline{\lim} a_n < \varepsilon.$$

Choose $N = N(\varepsilon)/|a_m - a_n| < \varepsilon$ for $m > n \ge N$. Then for any $n \ge N$

$$sup_{u \ge n} a_u - inf_{v \ge n} a_v < \varepsilon$$

Letting $n \to \infty$ we have

$$\Lambda - \lambda \le \varepsilon$$

therefore

$$\Lambda = \lambda$$

Second Proof

- (i) The sequence is bounded as before.
- (ii) \exists a convergent subsequence $\{a_{n_r}\}$ converging to a, say.
- (iii) We now show that $\{a_n\}$ converges to a.

Given $\varepsilon > 0 \exists N = M(\varepsilon)$ such that

- (I) $|a a_{n_r}| < \frac{1}{2}\varepsilon$ for $n_r \ge M$ (II) $|a_m a_n| < \frac{1}{2}\varepsilon$ for $m > n \ge M$ Let r^* be the least r for which $n_{r^*} \ge M$.

Then for $m > n_{r^*}$ we have

$$|a_m - a| \le |a_m - a_{n_{r^*}}| + |a_{n_{r^*}} - a| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon$$

Therefore the sequence is convergent.

The above theorem applies to complex numbers and to ndimensional Euclidean space.

Theorem 5 $\sum_{n=1}^{\infty} a_n$ is convergent \Leftrightarrow (c) given $\varepsilon > 0 \exists N = N(\varepsilon) / |\sum_{r=n}^{m} a_r| < \infty$ ε whenever $m > n \ge N$

Proof Apply theorem 4 to the sequence of partial sums and the result follows.