ANALYSIS
REAL VARIABLE
SEQUENCES

A monotonic increasing sequence either converges to a finite limit or diverges
to = oo.

Proof Let S be the set of numbers in the sequence {a,}.

Case (i) S has no upper bound.
Given any X, 3ng/ an, > X = a, > X for n > ny.
This means that the sequence diverges to +o0.
Case (ii) S has an upper bound; bda, = a.
Given e > 03ny/ a,, >a—ec=>a—¢c < a, < aforn>n;.
This means that the sequence converges to a.

Upper and lower limits

Definition

= lim sup,,,0m

n—oo

lim,, .o Sup a,
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= lim inf,,~,am

lim a n—00
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lim, o inf a, }

Justification (for lim sup) Case (i) Suppose S has no upper bound.
1.e Supm>1ay, = +00
Then supy,>na,;, = +oo for all n.

In these circumstances we say that lim,,_,a, = +00

Case (ii) Now suppose S has an upper bound. Write supu,>na, =

Am)

AMA®) | is a monotonic decreasing sequence. If this sequence is
bounded below, then it converges to a number A, and lim,, ,,.a, =
A, and if not, lim,,_,.a, = —oc©

Subject to the conventions we have introduced lima,, always exists.

Suppose lima, = A and suppose A finite. Then A has the following
property (P)

(P) For every € > 0



(i) a, > A — ¢ for an infinity of n

(ii) a, > A + ¢ for at most a finite number of n.

Proof (i) If 3 only a finite number of n/ a, > A — ¢ then = lima, < A —«¢.

(ii) If 3 an infinity of n/ a,, > A + & = lima,, > A + ¢

We may define A as the upper bound of the set of limit points of {a,}.

Theorem 1
lima,, < lima,

Proof
infmZnam S Supmznam

Let n — oo and the result follows.

Theorem 2

lim a, =a < lim, . a, = lima, =a
n—oo n—oo

Proof (1) Suppose that lim,, .. a, = a

Then given € > 0,3IN = N(¢)/ |a,, — a|] < e for m > n. Hence foe

n>N

a— € < iNfr>nlm < SUDR>nAm < 0+ €

Hencea —e < A<A<a+t+e<at+e= A=A

(2) Suppose lim,,_,a, = lim, _..a, =a
Then, given ¢ > 0 dN = N(¢)/ for n > N,

a—¢€ S infmZnam S SUPm>nlm S a+e
Hence for m > N we have
|y, —a| <e

Theorem 3 It is possible to choose a subsequence by, b; . .. from (ay, as
exists = lim,,_ oo an,

Proof (i) A =+
(ii) A= -0

ooy limy, o by



(iii) A finite
Let I, be the interval [A — £, A 4 1]
. From property (P);
I/ ar, € I Write b; = a,,
dry > 11/ a., € Iy  Write by = a,,
Continue the process, and we obtain a subsequence of the required
type.

Corollary A bounded sequence of points in n-dimensional Euclidean space
contains a convergent subsequence (In particular the result is true for
sequences of real and complex numbers [R;& Rs)]

Example Every real sequence contains either a strictly monotonic increasing
subsequence, or a weakly monotonic decreasing subsequence.

Theorem 4 The General (Cauchy) Principle of Convergence The fol-

lowing condition (c) is a necessary and sufficient condition for lim,, ., a,,
to exist.

(¢) Given € > 03N = N(¢)/ |am — an| < € whenever m >n > N.

Proof Necessity Suppose lim, . a, =a
IN/ |a; — a| < 3¢ for s > N therefore for m > n > N

lam — an| < lam —al +]a—a,| <e
Sufficiency First Proof.

(i) We prove the sequence bounded.
For m > n > N(1) we have

lam — a,| < 1

Choose a fixed n; > N(1). Then |a,| < |an, |+ 1 for m > n.
Therefore {a,,} is bounded.

(ii) We show that, given ¢ > 0,

lima,, — lima,, < €.

Choose N = N(¢)/ |apm — an| < € for m >n > N.
Then for any n > N

SUDy>n Oy, — N fy>nly < €



Letting n — oo we have

A-X<e

therefore

A=)\
Second Proof

(i) The sequence is bounded as before.
(ii) 3 a convergent subsequence {a,, } converging to a, say.
(iii) We now show that {a,} converges to a.
Given € > 03N = M (e) such that
I la—an|<3ie forn,>M
A)  |am —an| < 3e form>n>M
Let r* be the least r for which n,~ > M.
Then for m > n,« we have

+ <l !
n,. —a < ge+ge

lam —a| < |am — an,.

Therefore the sequence is convergent.
The above theorem applies to complex numbers and to n-
dimensional Euclidean space.

Theorem 5 > °° | a, is convergent < (c) givene > 03N = N(e)/ |20, a,| <
¢ whenever m >n > N

Proof Apply theorem 4 to the sequence of partial sums and the result fol-
lows.



