
ANALYSIS
REAL VARIABLE
SEQUENCES

A monotonic increasing sequence either converges to a finite limit or diverges
to =∞.

Proof Let S be the set of numbers in the sequence {an}.

Case (i) S has no upper bound.

Given any X,∃n0/ an0
> X ⇒ an > X for n ≥ n0.

This means that the sequence diverges to +∞.

Case (ii) S has an upper bound; bdan = a.

Given ε > 0∃n1/ an1
> a− ε⇒ a− ε < an ≤ a for n ≥ n1.

This means that the sequence converges to a.

Upper and lower limits

Definition
limn→∞ sup an

limn→∞an

}

= lim
n→∞

supm≥nam

limn→∞ inf an

limn→∞an

}

= lim
n→∞

infm≥nam

Justification (for lim sup) Case (i) Suppose S has no upper bound.

i.e supm≥1am = +∞

Then supm≥nam = +∞ for all n.

In these circumstances we say that limn→∞an = +∞

Case (ii) Now suppose S has an upper bound. Write supm≥nam =
A(n)

A(1)A(2) . . . is a monotonic decreasing sequence. If this sequence is
bounded below, then it converges to a number Λ, and limn→∞an =
Λ, and if not, limn→∞an = −∞

Subject to the conventions we have introduced liman always exists.

Suppose liman = Λ and suppose Λ finite. Then Λ has the following
property (P)

(P) For every ε > 0
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(i) an > Λ− ε for an infinity of n

(ii) an > Λ + ε for at most a finite number of n.

Proof (i) If ∃ only a finite number of n/ an > Λ− ε then⇒ liman ≤ Λ− ε.

(ii) If ∃ an infinity of n/ an > Λ + ε⇒ liman ≥ Λ + ε

We may define Λ as the upper bound of the set of limit points of {an}.

Theorem 1
liman ≤ liman

Proof
infm≥nam ≤ supm≥nam

Let n→∞ and the result follows.

Theorem 2
lim

n→∞
an = a⇔ limn→∞an = lim

n→∞
an = a

Proof (1) Suppose that limn→∞ an = a

Then given ε > 0,∃N = N(ε)/ |am− a| < ε for m ≥ n. Hence foe
n ≥ N

a− ε < infm≥nam ≤ supm≥nam < a+ ε

Hence a− ε < λ ≤ Λ < a+ ε < a+ ε⇒ λ = Λ

(2) Suppose limn→∞an = limn→∞an = a

Then, given ε > 0 ∃N = N(ε)/ for n ≥ N,

a− ε ≤ infm≥nam ≤ supm≥nam ≤ a+ ε

Hence for m ≥ N we have

|am − a| ≤ ε

Theorem 3 It is possible to choose a subsequence b1, b1 . . . from (a1, a2 . . . , / limn→∞ bn
exists = limn→∞an

Proof (i) Λ = +∞

(ii) Λ = −∞
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(iii) Λ finite

Let In be the interval [Λ−
1
n
,Λ + 1

n
]

¿From property (P);

∃r1/ ar1
∈ I1 Write b1 = ar1

∃r2 > r1/ ar2
∈ I2 Write b2 = ar2

Continue the process, and we obtain a subsequence of the required
type.

Corollary A bounded sequence of points in n-dimensional Euclidean space
contains a convergent subsequence (In particular the result is true for
sequences of real and complex numbers [R1&R2]

Example Every real sequence contains either a strictly monotonic increasing
subsequence, or a weakly monotonic decreasing subsequence.

Theorem 4 The General (Cauchy) Principle of Convergence The fol-
lowing condition (c) is a necessary and sufficient condition for limn→∞ an

to exist.

(c) Given ε > 0∃N = N(ε)/ |am − an| < ε whenever m > n ≥ N .

Proof Necessity Suppose limn→∞ an = a

∃N/ |as − a| < 1
2
ε for s ≥ N therefore for m > n > N

|am − an| ≤ |am − a|+ |a− an| < ε

Sufficiency First Proof.

(i) We prove the sequence bounded.
For m > n ≥ N(1) we have

|am − an| < 1

Choose a fixed n1 ≥ N(1). Then |am| < |an1
|+ 1 for m ≥ n1.

Therefore {am} is bounded.

(ii) We show that, given ε > 0,

liman − liman < ε.

Choose N = N(ε)/ |am − an| < ε for m > n ≥ N .
Then for any n ≥ N

supu≥nau − infv≥nav < ε
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Letting n→∞ we have

Λ− λ ≤ ε

therefore

Λ = λ

Second Proof

(i) The sequence is bounded as before.

(ii) ∃ a convergent subsequence {anr
} converging to a, say.

(iii) We now show that {an} converges to a.
Given ε > 0∃N =M(ε) such that
(I) |a− anr

| < 1
2
ε for nr ≥M

(II) |am − an| <
1
2
ε for m > n ≥M

Let r∗ be the least r for which nr∗ ≥M .
Then for m > nr∗ we have

|am − a| ≤ |am − anr∗
|+ |anr∗

− a| <
1

2
ε+

1

2
ε

Therefore the sequence is convergent.
The above theorem applies to complex numbers and to n-
dimensional Euclidean space.

Theorem 5
∑∞

n=1 an is convergent⇔ (c) given ε > 0∃N = N(ε)/ |
∑

m

r=n
ar| <

ε whenever m > n ≥ N

Proof Apply theorem 4 to the sequence of partial sums and the result fol-
lows.
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