REAL ANALYSIS INTERCHANGE THEOREMS

Theorem 1 Suppose $f_{12}(xy)$ is continuous at (ab) and $\exists \delta > 0$ such that $f_2(xb)$ exists for $|x-a| < \delta$. Then $f_{21}(ab)$ exists and $= f_{12}(ab)$.

Proof Without loss of generality we may take (ab) = (0,0).

Let ε be given. Choose δ , such that $0 < \delta_1 < \delta$ and $|f_{12}(xy) - f_{12}(00)| < \varepsilon$ whenever $|x| < \delta_1$ and $|y| < \delta_1$. Suppose $0 < |h| < \delta_1$.

Consider

$$\frac{f_2(ho) - f_2(00)}{h} = \lim_{k \to 0} \frac{\Delta_{hk}}{P} hk$$

$$\Delta_{hk} = \{ f(hk) - f(h0) \} - \{ f(ok) - f(00) \}$$

We regard k as being temporarily fixed with |k| sufficiently small, and write F(h) = f(hk) - f(h0) so that

$$\frac{\Delta_{hk}}{hk} = \frac{F(h) - F(0)}{hk}$$

$$= \frac{F'(\theta h)}{k} \text{ by MVT0} < \theta < 1$$

$$= \frac{f_1(\theta h, k) - f_1(\theta h, 0)}{k}$$

$$= f_{12}(\theta h \theta' k) \text{ my MVT0} < \theta' < 1$$

Hence

$$\left|\frac{\Delta_{hk}}{hk} - f_{12}(00)\right| < \varepsilon.$$

Letting $k \to 0$ we have by (1)

$$\left| \frac{f_2(h0) - f_2(00)}{h} - f_{12}(00) \right| \le \varepsilon.$$

Hence $f_{21}(00)$ exists and is equal to $f_{12}(00)$

In the following results R de3notes the closed rectangle $a \le x \le b$ $c \le y \le d$.

Lemma Let f(xy) be continuous on R. Then we have $\phi(x) = \sum_{c}^{d} f(xy) dy$ is continuous on [ab].

Proof f(xy) is uniformly continuous on R. Hence, given $\varepsilon > 0$, $\exists \delta > 0 ||f(P) - f(Q)| < \frac{\varepsilon}{d-c}$ whenever $P \in R$ $Q \in R$ and $|PQ| < \delta$. Now if x_1, x_2 are each in [ab] and $|x_1 - x_2| < \delta$:

$$|\phi(x_1) - \phi(x_2)| \le \int_0^d |f(x_1y) - f(x_2y)| \, dy < d - c \frac{\varepsilon}{d - c} = \varepsilon$$

Theorem 2 Let f(xy) be continuous as a function of y for $c \le y \le d$ relative to this interval, for each x with $a \le x \le b$. Suppose that $f_1(xy)$ is continuous with respect to (xy) on the region a < x < b $c \le y \le d$. Then

$$\frac{\partial}{\partial x} \int_c^d f(xy) \, dy = \int_c^d \frac{\partial}{\partial x} f(xy) \, dy \text{ for } a < x < b$$

Proof Let x_0 satisfy $a < x_0 < b$.

Choose η to satisfy $a < a + \eta < x_0 < b - \eta < b$. Let R_{η} be the closed rectangle $a + \eta \leq x \leq b - \eta, c \leq y \leq d$, and I_{η} the interval $a + \eta \leq x \leq b - \eta$.

 $f_1(xy)$ is uniformly continuous on R_η . Given $\varepsilon > 0 \exists \delta ||f_1(P) - f_1(Q)| < \frac{\varepsilon}{d-c}$ whenever $|PQ| < \delta$ and $P, Q \in R_\eta$.

Then if $|H| < \delta$ and $x_0 + h \in I_{\eta}$ we have

$$\left| \frac{\phi(x_0 + h) - \phi(x_0)}{h} - \int_c^d f_1(x_0 y) \, dy \right|$$

$$= \left| \int_c^d \left\{ \frac{f(x_0 + h, y) - f(x_0 y)}{h} - f_1(x_0 y) \right\} \, dy \right|$$

$$= \left| \int_c^d \left\{ f_1(x_0 + \theta y h, y) - f_1(x_0 y) \right\} \, dy \right| \quad 0 < \theta_y < 1$$

$$< d - c. \frac{\varepsilon}{d - c} = \varepsilon$$

Theorem 3 Let f(xy) be continuous on R. Then

$$I_1 = \int_a^b dx \int_c^a f(xy) dy = \int_c^d dy \int_a^b f(xy) dx = I_2$$

Note This can be justified under more general conditions.

Proof Subdivide R into n^2 small rectangles. If R_{ij} is one of these then $A = A_{ij}n^2$.

Let
$$M_{ij} = \overline{bd}_{P \in R_{ij}} f(P)$$
 $m_{ij} = \underline{bd}_{p \in R_{ij}} f(P)$ $i = 1, 2, \dots, n, j = 1, 2, \dots, n.$

Since f is uniformly continuous on R we may choose n sufficiently large so that $M_{ij} - m_{ij} < \varepsilon$. Thus for each ij,

$$m_{ij} \frac{A}{n^{2}} \leq \int_{a_{i-1}}^{a_{i}} dx \int_{b_{j-1}}^{b_{j}} f(xy) dy \leq M_{ij} \frac{A}{n^{2}}$$

$$\int_{a}^{b} dx \int_{c}^{d} dy = \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{a_{i-1}}^{a_{i}} dx \int_{b_{j-1}}^{b_{j}} f(xy) dy \text{ therefore}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} \frac{A}{n^{2}} \leq I_{1} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} \frac{A}{n^{2}} \text{ similarly}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} \frac{A}{n^{2}} \leq I_{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} \frac{A}{n^{2}}$$

$$\Rightarrow |I_{1} - I_{2}| < A\varepsilon \Rightarrow I_{1} = I_{2}$$

Theorem 4 Let Tb be the triangular region $a \le y \le x \le b$.

Let f(xy) be continuous on T. Then

$$\int_a^b dx \int_a^x f(xy) dy = \int_a^b dy \int_y^b f(xy) dx.$$

Proof We first establish the existence of these integrals.

Let $M = \overline{bd}_{P \in T} |f(P)|$. Given $\varepsilon >$) choose δ such that

1.
$$M\delta < \frac{1}{2}\varepsilon$$

2.
$$|f(P) - f(Q)| < \frac{1}{2} \frac{\varepsilon}{b-a}$$
 whenever $|PQ| < \delta$ and $P, Q \in T$.

If $a \le x_1 \le x_2 \le b$ and $x_2 - x_1 < \delta$ we have

$$\left| \int_{a}^{x_{2}} f(x_{2}y) \, dy - \int_{a}^{x_{1}} f(x_{1}y) \, dy \right|$$

$$\leq \left| \int_{a}^{x_{1}} f(x_{2}y) \, dy - f(x_{1}y) \, dy + \int_{x_{1}}^{x_{2}} f(x_{2}y) \, dy \right|$$

$$\leq (x_2 - x_1)M + \int_a^{x_1} |f(x_2y) - f(x_1y)| \, dy$$

$$\leq \delta M + b - a \frac{1}{2} \frac{\varepsilon}{b - a} = \varepsilon$$

This proves continuity of $\int_a^x f(xy) dy$, and hence the existence of the LHS

Similarly $\int_y^b f(xy) dx$ is continuous and hence the RHS exists.

We write $\iint_T f(xy) dxdy$ for $\int_a^b dx \int_a^x f(xy) dx$.

We write $\iint_T f(xy) dydx$ for $\int_a^b dy \int_y^b f(xy) dx$.

Also let A(T) denote the area of T.

We have

$$\left| \iint_{T} f(xy) \, dx dy - \iint_{T} f(xy) \, dy dx \right| \le 2NA(T) \tag{1}$$

Population P_r Let T be the region $a \le y \le x \le b$. Let f(xy) be continuous on T. Let $M = \overline{bd}_{p \in T} |f(P)|$ and let A(T) be the area of T.

Then for $r = 0, 1, 2, \ldots, n$ we have

$$\left| \iint_T f(xy) \, dx dy - \iint_T f(xy) \, dy dx \right| \le 2MA(T) \left(\frac{1}{2}\right)^r$$

 P_o is true from (1). Let $r \ge 0$ and suppose P_r is true. It remains to prove that P_{r+1} is true.

$$\left| \iint_T f \, dx dy - \iint_T f \, dy dx \right| =$$

$$\left| \iint_{TR_1} f \, dx dy - \iint_{T_1} f \, dy dx + \iint_{T_2} f \, dx dy - \iint_{T_2} f \, dy dx + \iint_C f \, dx dy - \iint_C f \, dy dx \right|$$

By Theorem 3 $\iint_C f dxdy = \iint_C f dydx$ therefore

$$\left| \iint_{T} f \, dx dy - \iint_{T} f \, dy dx \right| \leq \left| \iint_{T_{1}} f \, dx dy - \iint_{T_{1}} f \, dy dx \right| + \left| \iint_{T_{2}} f \, dx dy - \iint_{T_{2}} f \, dy dx \right|$$

$$\leq 2 \left(\frac{1}{2} \right)^{r} M(A(T_{1}) + A(T_{2}))$$

$$= 2 \left(\frac{1}{2} \right)^{r} M\left(2 \cdot \frac{1}{4} A(T) \right)$$

$$= 2 \left(\frac{1}{2} \right)^{r+1} MA(T)$$

Hence the theorem follows.

The following two theorems are generalisations.

Theorem 5 Suppose c(x) d(x) are continuous on I = [ab] and that $c(x) \le d(x)$, for x in I. Let S be the region of points (x, y) satisfying $a \le x \le b$ $c(x) \le y \le d(x)$. Suppose that f(xy) is continuous on S.

Then
$$\int_{c(x)}^{d(x)} f(xy) dy$$
 is continuous on I .

Theorem 6 Let c(x) d(x) be continuous on I = [ab] Suppose c(x) < d(x) and that c(x) d(x) are differentiable for a < x < b. Let S be the set of points with $a \le x \le b$ $c(x) \le y \le d(x)$. Let S_0 be the set of points with a < x < b c(x) < y < d(x). Suppose that f(xy) is continuous on S and that $f_1(xy)$ is uniformly continuous in S_0 . Then we have

$$\frac{d}{dx} \int_{c(x)}^{d(x)} f(xy) \, dy = d'(x) f(x, d(x)) - c'(x) f(x, c(x)) + \int_{c(x)}^{d(x)} f_1(x, y) \, dy$$