REAL ANALYSIS

INTERCHANGE THEOREMS
Theorem 1 Suppose $f_{12}(x y)$ is continuous at $(a b)$ and $\exists \delta>0$ such that $f_{2}(x b)$ exists for $|x-a|<\delta$. Then $f_{21}(a b)$ exists and $=f_{12}(a b)$.

Proof Without loss of generality we may take $(a b)=(0,0)$.
Let ε be given. Choose δ, such that $0<\delta_{1}<\delta$ and $\left|f_{12}(x y)-f_{12}(00)\right|<$ ε whenever $|x|<\delta_{1}$ and $|y|<\delta_{1}$. Suppose $0<|h|<\delta_{1}$.
Consider

$$
\begin{gathered}
\frac{f_{2}(h o)-f_{2}(00)}{h}=\lim _{k \rightarrow 0} \frac{\Delta_{h k}}{P} h k \\
\Delta_{h k}=\{f(h k)-f(h 0)\}-\{f(o k)-f(00)\}
\end{gathered}
$$

We regard k as being temporarily fixed with $|k|$ sufficiently small, and write $F(h)=f(h k)-f(h 0)$ so that

$$
\begin{aligned}
\frac{\Delta_{h k}}{h k} & =\frac{F(h)-F(0)}{h k} \\
& =\frac{F^{\prime}(\theta h)}{k} \text { by MVT } 0<\theta<1 \\
& =\frac{f_{1}(\theta h, k)-f_{1}(\theta h, 0)}{k} \\
& =f_{12}\left(\theta h \theta^{\prime} k\right) \text { my MVT } 0<\theta^{\prime}<1
\end{aligned}
$$

Hence

$$
\left|\frac{\Delta_{h k}}{h k}-f_{12}(00)\right|<\varepsilon
$$

Letting $k \rightarrow 0$ we have by (1)

$$
\left|\frac{f_{2}(h 0)-f_{2}(00)}{h}-f_{12}(00)\right| \leq \varepsilon
$$

Hence $f_{21}(00)$ exists and is equal to $f_{12}(00)$
In the following results R de3notes the closed rectangle $a \leq x \leq b c \leq$ $y \leq d$.

Lemma Let $f(x y)$ be continuous on R. Then we have $\phi(x)=\sum_{c}^{d} f(x y) d y$ is continuous on $[a b]$.

Proof $f(x y)$ is uniformly continuous on R. Hence, given $\varepsilon>0, \exists \delta>$ $\left.0\left||f(P)-f(Q)|<\frac{\varepsilon}{d-c}\right.$ whenever $P \in R Q \in R$ and $| P Q \right\rvert\,<\delta$.
Now if x_{1}, x_{2} are each in $[a b]$ and $\left|x_{1}-x_{2}\right|<\delta$:

$$
\left|\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right| \leq \int_{c}^{d}\left|f\left(x_{1} y\right)-f\left(x_{2} y\right)\right| d y<d-c \frac{\varepsilon}{d-c}=\varepsilon
$$

Theorem 2 Let $f(x y)$ be continuous as a function of y for $c \leq y \leq d$ relative to this interval, for each x with $a \leq x \leq b$. Suppose that $f_{1}(x y)$ is continuous with respect to ($x y$) on the region $a<x<b c \leq y \leq d$. Then

$$
\frac{\partial}{\partial x} \int_{c}^{d} f(x y) d y=\int_{c}^{d} \frac{\partial}{\partial x} f(x y) d y \text { for } a<x<b
$$

Proof Let x_{0} satisfy $a<x_{0}<b$.
Choose η to satisfy $a<a+\eta<x_{0}<b-\eta<b$. Let R_{η} be the closed rectangle $a+\eta \leq x \leq b-\eta, c \leq y \leq d$, and I_{η} the interval $a+\eta \leq x \leq b-\eta$.
$f_{1}(x y)$ is uniformly continuous on R_{η}. Given $\varepsilon>0 \exists \delta| | f_{1}(P)-f_{1}(Q) \mid<$ $\frac{\varepsilon}{d-c}$ whenever $|P Q|<\delta$ and $P, Q \in R_{\eta}$.
Then if $|H|<\delta$ and $x_{0}+h \in I_{\eta}$ we have

$$
\begin{aligned}
& \left|\frac{\phi\left(x_{0}+h\right)-\phi\left(x_{0}\right)}{h}-\int_{c}^{d} f_{1}\left(x_{0} y\right) d y\right| \\
= & \left|\int_{c}^{d}\left\{\frac{f\left(x_{0}+h, y\right)-f\left(x_{0} y\right)}{h}-f_{1}\left(x_{0} y\right)\right\} d y\right| \\
= & \left|\int_{c}^{d}\left\{f_{1}\left(x_{0}+\theta y h, y\right)-f_{1}\left(x_{0} y\right)\right\} d y\right| 0<\theta_{y}<1 \\
< & d-c \cdot \frac{\varepsilon}{d-c}=\varepsilon
\end{aligned}
$$

Theorem 3 Let $f(x y)$ be continuous on R. Then

$$
I_{1}=\int_{a}^{b} d x \int_{c}^{a} f(x y) d y=\int_{c}^{d} d y \int_{a}^{b} f(x y) d x=I_{2}
$$

Note This can be justified under more general conditions.
Proof Subdivide R into n^{2} small rectangles. If $R_{i j}$ is one of these then $A=A_{i j} n^{2}$.
Let $M_{i j}=\overline{b d}_{P \in R_{i j}} f(P) \quad m_{i j}=\underline{b d_{p \in R_{i j}}} f(P) \quad i=1,2, \ldots, n$, $j=1,2, \ldots, n$.
Since f is uniformly continuous on R we may choose n sufficiently large so that $M_{i j}-m_{i j}<\varepsilon$. Thus for each $i j$,

$$
\begin{aligned}
& m_{i j} \frac{A}{n^{2}} \leq \int_{a_{i-1}}^{a_{i}} d x \int_{b_{j-1}}^{b_{j}} f(x y) d y \leq M_{i j} \frac{A}{n^{2}} \\
& \int_{a}^{b} d x \int_{c}^{d} d y=\sum_{i=1}^{n} \sum_{j=1}^{n} \int_{a_{i-1}}^{a_{i}} d x \int_{b_{j-1}}^{b_{j}} f(x y) d y \text { therefore } \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} m_{i j} \frac{A}{n^{2}} \leq I_{1} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} M_{i j} \frac{A}{n^{2}} \text { similarly } \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} m_{i j} \frac{A}{n^{2}} \leq I_{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} M_{i j} \frac{A}{n^{2}} \\
& \Rightarrow\left|I_{1}-I_{2}\right|<A \varepsilon \Rightarrow I_{1}=I_{2}
\end{aligned}
$$

Theorem 4 Let $T \mathrm{~b}$ be the triangular region $a \leq y \leq x \leq b$.
Let $f(x y)$ be continuous on T. Then

$$
\int_{a}^{b} d x \int_{a}^{x} f(x y) d y=\int_{a}^{b} d y \int_{y}^{b} f(x y) d x
$$

Proof We first establish the existence of these integrals.
Let $M=\overline{b d}_{P \in T}|f(P)|$. Given $\left.\varepsilon>\right)$ choose δ such that

1. $M \delta<\frac{1}{2} \varepsilon$
2. $|f(P)-f(Q)|<\frac{1}{2} \frac{\varepsilon}{b-a}$ whenever $|P Q|<\delta$ and $P, Q \in T$.

If $a \leq x_{1} \leq x_{2} \leq b$ and $x_{2}-x_{1}<\delta$ we have

$$
\begin{aligned}
& \left|\int_{a}^{x_{2}} f\left(x_{2} y\right) d y-\int_{a}^{x_{1}} f\left(x_{1} y\right) d y\right| \\
\leq & \left|\int_{a}^{x_{1}} f\left(x_{2} y\right) d y-f\left(x_{1} y\right) d y+\int_{x_{1}}^{x_{2}} f\left(x_{2} y\right) d y\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(x_{2}-x_{1}\right) M+\int_{a}^{x_{1}}\left|f\left(x_{2} y\right)-f\left(x_{1} y\right)\right| d y \\
& \leq \delta M+b-a \frac{1}{2} \frac{\varepsilon}{b-a}=\varepsilon
\end{aligned}
$$

This proves continuity of $\int_{a}^{x} f(x y) d y$, and hence the existence of the LHS.

Similarly $\int_{y}^{b} f(x y) d x$ is continuous and hence the RHS exists.
We write $\iint_{T} f(x y) d x d y$ for $\int_{a}^{b} d x \int_{a}^{x} f(x y) d x$.
We write $\iint_{T} f(x y) d y d x$ for $\int_{a}^{b} d y \int_{y}^{b} f(x y) d x$.
Also let $A(T)$ denote the area of T.
We have

$$
\begin{equation*}
\left|\iint_{T} f(x y) d x d y-\iint_{T} f(x y) d y d x\right| \leq 2 N A(T) \tag{1}
\end{equation*}
$$

Population P_{r} Let T be the region $a \leq y \leq x \leq b$. Let $f(x y)$ be continuous on T. Let $M=\overline{b d}_{p \in T}|f(P)|$ and let $A(T)$ be the area of T.
Then for $r=0,1,2, \ldots, n$ we have

$$
\left|\iint_{T} f(x y) d x d y-\iint_{T} f(x y) d y d x\right| \leq 2 M A(T)\left(\frac{1}{2}\right)^{r}
$$

P_{o} is true from (1). Let $r \geq 0$ and suppose P_{r} is true. It remains to prove that P_{r+1} is true.

$$
\begin{gathered}
\left|\iint_{T} f d x d y-\iint_{T} f d y d x\right|= \\
\left|\iint_{T R_{1}} f d x d y-\iint_{T_{1}} f d y d x+\iint_{T_{2}} f d x d y-\iint_{T_{2}} f d y d x+\iint_{C} f d x d y-\iint_{C} f d y d x\right|
\end{gathered}
$$

By Theorem $3 \iint_{C} f d x d y=\iint_{C} f d y d x$ therefore

$$
\begin{aligned}
\left|\iint_{T} f d x d y-\iint_{T} f d y d x\right| & \leq\left|\iint_{T_{1}} f d x d y-\iint_{T_{1}} f d y d x\right|+\left|\iint_{T_{2}} f d x d y-\iint_{T_{2}} f d y d x\right| \\
& \leq 2\left(\frac{1}{2}\right)^{r} M\left(A\left(T_{1}\right)+A\left(T_{2}\right)\right) \\
& =2\left(\frac{1}{2}\right)^{r} M\left(2 \cdot \frac{1}{4} A(T)\right) \\
& =2\left(\frac{1}{2}\right)^{r+1} M A(T)
\end{aligned}
$$

Hence the theorem follows.
The following two theorems are generalisations.
Theorem 5 Suppose $c(x) d(x)$ are continuous on $I=[a b]$ and that $c(x) \leq$ $d(x)$, for x in I. Let S be the region of points (x, y) satisfying $a \leq x \leq$ $b c(x) \leq y \leq d(x)$. Suppose that $f(x y)$ is continuous on S.
Then $\int_{c(x)}^{d(x)} f(x y) d y$ is continuous on I.
Theorem 6 Let $c(x) d(x)$ be continuous on $I=[a b]$ Suppose $c(x)<d(x)$ and that $c(x) d(x)$ are differentiable for $a<x<b$. Let S be the set of points with $a \leq x \leq b c(x) \leq y \leq d(x)$. Let S_{0} be the set of points with $a<x<b c(x)<y<d(x)$. Suppose that $f(x y)$ is continuous on S and that $f_{1}(x y)$ is uniformly continuous in S_{0}. Then we have

$$
\frac{d}{d x} \int_{c(x)}^{d(x)} f(x y) d y=d^{\prime}(x) f(x, d(x))-c^{\prime}(x) f(x, c(x))+\int_{c(x)}^{d(x)} f_{1}(x, y) d y
$$

