
REAL ANALYSIS
INEQUALITIES

The Inequality of Arithmetic and Geometric Means Given x1 ≥ 0 x2 ≥
0 . . . xn ≥ 0

A =
x1 + x2 + . . .+ xn

n
G = (x1x2 . . . xn)

1
n

Then G < A unless x1 = x2 = . . . = xn, when G = A.

Proof Suppose without loss of generality that x1 is a maximal xν and x2 is
a minimal xν .

If x1 = x2 the r’s are all equal and there is nothing to prove.

Suppose then that x1 > x2. We form a new set of numbers x11x21 . . . xn1

by writing

x11 = A x21 = −A+ x1 + x2 xr1 = xr r = 3, . . . , n.

Let A1, G1 be the A.M and G.M of the xr1’s.

A1 = A since x11 + x21 = x1 + x2.

However

x11x2x − x1x2 = A(x1 + x2 − A)− x1x2

= (x1 − A)(A− x2) > 0

since x1 > A > x2.

Therefore G1 > G

If the xν1 are not all equal we can again take a largest xα1 and a smallest
xβ1 and replace them by A, xα1 + xα2 − A.

A2 = A1 G2 > G1

After at most n− 1 steps all the x’s are equal.

G < G1 < . . . < GK = Ak = A therefore G < A.

Cauchy’s Inequalities Given x1 . . . xn y1 . . . yn real.

Then
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n
∑

r=1

xryr ≤

(

n
∑

r=1

a2
r

)
1
2
(

n
∑

r=1

y2
r

)
1
2

with equality⇔ the two sets are proportionali.e. ⇔ ∃(λµ) 6= (00)|λxr+
µyr = 0 (r = 1, 2, . . . , n)

Proof Consider the quadratic form Q(λµ) defined by

Q(λµ) =
n
∑

r=1

(λxr + µyr)
2

= λ2
n
∑

r=1

x2
r + 2λµ

(

∑

)r = 1nxryr
)

+ µ2
n
∑

r=1

y2
r

If ∃λµ 6= 00|λxr + µyr = 0 r = 1, 2, . . . , n then there is nothing to
prove.

Suppose ∃ no such (λ, µ). Then Q(λµ) > 0 for every (λµ) 6= (00).
Hence Q(λµ) is positive definite so that

(

n
∑

r=1

xryr

)2

<
n
∑

r=1

x2
r

n
∑

r=1

y2
r

using “b2 < 4ac”.

Weighted Means Given a set of non-negative numbers x1 . . . xn and a set
of weights P , where we attach the weight Pr to xr, each P > 0. The
weighted means are

AP =
P1x1 + . . .+ Pnxn

P1 + P2 + . . .+ Pn

GP = (xP1
1 xP2

2 . . . xPn
n )

1
p1+P2+...+Pn

Note If the weights p1 . . . pn are replaced by tp1 . . . tpn, then Ap GP are
unchanged. In particular if we take t = 1

P1+...+pn
we get a set of weights

Q : q1 . . . qn|q1 + . . .+ qn = 1. Then GP ≤ AP with equality ⇔ all the
x’s are equal.

Proof (i) Result proved when Pj are all integers.
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(ii) Result follows when Pj are commensurable; i.e. when ∃t > 0|tP1 . . . tPn

are all integers.

(iii) We have to deal with the case where the P ’s are not commensu-
rable.

Let q1 . . . qn be a set of weights |
∑

qj = 1.

Let Q (q1 . . . qn) be a point in Rn.

Take a set of rational points

P r = (r1 . . . rn) rj > 0

where P r → Q as r →∞.

GPr < APr unless the xν equal.

Letting r →∞ GQ ≤ AQ.

We still have to prove strict inequality when the x’s are not all
equal. Suppose then that the x’s are not all equal. Write

qj = j′j + q′′j j = 1, 2, . . . , n

where q′j > 0 q′′j > 0 q′j is rational.

P ′ : Q′1 . . . q
′

n P ′′ : q′′1 . . . q
′′

n

r′ =
∑

q′j r′′ =
∑

q′′j r′ + r′′ = 1

GP ′ < AP ′ by (ii) Gp′′ ≤ Ap′′

GQ = (GP ′)r
′

(Gp′′)r
′′

≤ r′GP ′ + r′′GP ′′ < r′AP ′ + r′′AP ′′ = AQ

using
∑

qj = 1

Hölder’s Inequality We have two sets of numbers

x1 . . . xn xj ≥ 0
y1 . . . yn yj ≥ 0

α, β are positive and α + β = 1. Then

n
∑

ν=1

xα
ν y

β
ν ≤

(

n
∑

ν=1

xν

)α ( n
∑

ν=1

yν

)β

with equality ⇔ the sets are proportional.
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Alternative Form Suppose λ, µ are positive and 1
λ
+ 1

µ
= 1

n
∑

ν=1

xνyν ≤

(

n
∑

ν=1

xλ
ν

)
1
λ
(

n
∑

ν=1

yµν

)
1
µ

[This result above with α, β replaced by 1
λ
, 1
µ
and xα

ν , x
β
ν replaced by

new variables xν , yν .]

This generalises to k sets and k numbers α1 + . . .+ αk = 1.

Cauchy’s inequality follows with λ = µ = 2.

Proof Write U =
n
∑

ν=1

xν V =
n
∑

ν=1

yν

Suppose UV > 0 (nothing to prove otherwise).

UαV β =
n
∑

ν=1

xα
ν y

β
ν =

n
∑

ν=1

(

xν

U

)α (yν

V

)β

≤
n
∑

ν=1

α
xν

ν
+ β

yν

ν
= α + β = 1

with equality ⇔ xν
U

= yν
V

for ν = 1, 2, . . . , n.

These inequalities generalise to integrals.

Suppose f(x) ≥ 0 g(x) ≥ 0 are continuous on [a b]

∫ b

a
f(x)g(x) dx ≤

(

∫ b

a
f 2 dx

)
1
2
(

∫ b

a
g2 dx

)
1
2

This is known as Schwarz’s inequality.

If 1
λ
+ 1

µ
= 1 λ > 0 µ > 0 then

∫ b

a
f(x)g(x) dx ≤

(

∫ b

a
fλ dx

)
1
λ
(

∫ b

a
g−µ dx

)
1
µ

.

This is known as Hölder’s inequality.
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