The Inequality of Arithmetic and Geometric Means Given $x_{1} \geq 0 x_{2} \geq$ $0 \ldots x_{n} \geq 0$

$$
A=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} G=\left(x_{1} x_{2} \ldots x_{n}\right)^{\frac{1}{n}}
$$

Then $G<A$ unless $x_{1}=x_{2}=\ldots=x_{n}$, when $G=A$.
Proof Suppose without loss of generality that x_{1} is a maximal x_{ν} and x_{2} is a minimal x_{ν}.
If $x_{1}=x_{2}$ the ${ }_{r}$'s are all equal and there is nothing to prove.
Suppose then that $x_{1}>x_{2}$. We form a new set of numbers $x_{11} x_{21} \ldots x_{n 1}$ by writing

$$
x_{11}=A x_{21}=-A+x_{1}+x_{2} x_{r 1}=x_{r} r=3, \ldots, n
$$

Let A_{1}, G_{1} be the A.M and G.M of the $x_{r 1}$'s.
$A_{1}=A$ since $x_{11}+x_{21}=x_{1}+x_{2}$.
However

$$
\begin{aligned}
x_{11} x_{2 x}-x_{1} x_{2} & =A\left(x_{1}+x_{2}-A\right)-x_{1} x_{2} \\
& =\left(x_{1}-A\right)\left(A-x_{2}\right)>0
\end{aligned}
$$

since $x_{1}>A>x_{2}$.
Therefore $G_{1}>G$
If the $x_{\nu 1}$ are not all equal we can again take a largest $x_{\alpha 1}$ and a smallest $x_{\beta 1}$ and replace them by $A, x_{\alpha 1}+x_{\alpha 2}-A$.
$A_{2}=A_{1} G_{2}>G_{1}$
After at most $n-1$ steps all the x 's are equal.
$G<G_{1}<\ldots<G_{K}=A_{k}=A$ therefore $G<A$.
Cauchy's Inequalities Given $x_{1} \ldots x_{n} y_{1} \ldots y_{n}$ real.
Then

$$
\sum_{r=1}^{n} x_{r} y_{r} \leq\left(\sum_{r=1}^{n} a_{r}^{2}\right)^{\frac{1}{2}}\left(\sum_{r=1}^{n} y_{r}^{2}\right)^{\frac{1}{2}}
$$

with equality \Leftrightarrow the two sets are proportionali.e. $\Leftrightarrow \exists(\lambda \mu) \neq(00) \mid \lambda x_{r}+$ $\mu y_{r}=0(r=1,2, \ldots, n)$

Proof Consider the quadratic form $Q(\lambda \mu)$ defined by

$$
\begin{aligned}
Q(\lambda \mu) & =\sum_{r=1}^{n}\left(\lambda x_{r}+\mu y_{r}\right)^{2} \\
& \left.=\lambda^{2} \sum_{r=1}^{n} x_{r}^{2}+2 \lambda \mu\left(\sum\right) r=1^{n} x_{r} y_{r}\right)+\mu^{2} \sum_{r=1}^{n} y_{r}^{2}
\end{aligned}
$$

If $\exists \lambda \mu \neq 00 \mid \lambda x_{r}+\mu y_{r}=0 r=1,2, \ldots, n$ then there is nothing to prove.
Suppose \exists no such (λ, μ). Then $Q(\lambda \mu)>0$ for every $(\lambda \mu) \neq(00)$. Hence $Q(\lambda \mu)$ is positive definite so that

$$
\left(\sum_{r=1}^{n} x_{r} y_{r}\right)^{2}<\sum_{r=1}^{n} x_{r}^{2} \sum_{r=1}^{n} y_{r}^{2}
$$

using " $b^{2}<4 a c$ ".
Weighted Means Given a set of non-negative numbers $x_{1} \ldots x_{n}$ and a set of weights P, where we attach the weight P_{r} to x_{r}, each $P>0$. The weighted means are

$$
\begin{gathered}
A_{P}=\frac{P_{1} x_{1}+\ldots+P_{n} x_{n}}{P_{1}+P_{2}+\ldots+P_{n}} \\
G_{P}=\left(x_{1}^{P_{1}} x_{2}^{P_{2}} \ldots x_{n}^{P_{n}}\right)^{\frac{1}{p_{1}+P_{2}+\ldots+P_{n}}}
\end{gathered}
$$

Note If the weights $p_{1} \ldots p_{n}$ are replaced by $t p_{1} \ldots t p_{n}$, then $A_{p} G_{P}$ are unchanged. In particular if we take $t=\frac{1}{P_{1}+\ldots+p_{n}}$ we get a set of weights $Q: q_{1} \ldots q_{n} \mid q_{1}+\ldots+q_{n}=1$. Then $G_{P} \leq A_{P}$ with equality \Leftrightarrow all the x 's are equal.

Proof (i) Result proved when P_{j} are all integers.
(ii) Result follows when P_{j} are commensurable; i.e. when $\exists t>0 \mid t P_{1} \ldots t P_{n}$ are all integers.
(iii) We have to deal with the case where the P 's are not commensurable.
Let $q_{1} \ldots q_{n}$ be a set of weights $\mid \sum q_{j}=1$.
Let $Q\left(q_{1} \ldots q_{n}\right)$ be a point in R_{n}.
Take a set of rational points

$$
P^{r}=\left(r_{1} \ldots r_{n}\right) \quad r_{j}>0
$$

where $P^{r} \rightarrow Q$ as $r \rightarrow \infty$.
$G_{P_{r}}<A_{P_{r}}$ unless the x^{ν} equal.
Letting $r \rightarrow \infty G_{Q} \leq A_{Q}$.
We still have to prove strict inequality when the x 's are not all equal. Suppose then that the x 's are not all equal. Write

$$
q_{j}=j_{j}^{\prime}+q_{j}^{\prime \prime} j=1,2, \ldots, n
$$

where $q_{j}^{\prime}>0 q_{j}^{\prime \prime}>0 q_{j}^{\prime}$ is rational.

$$
\begin{aligned}
& \qquad \begin{array}{l}
P^{\prime}: Q_{1}^{\prime} \ldots q_{n}^{\prime} P^{\prime \prime}: q_{1}^{\prime \prime} \ldots q_{n}^{\prime \prime} \\
r^{\prime}=\sum q_{j}^{\prime} r^{\prime \prime}=\sum q_{j}^{\prime \prime} r^{\prime}+r^{\prime \prime}=1 \\
G_{P^{\prime}}<A_{P^{\prime}} \text { by }(\mathrm{ii}) G_{p^{\prime \prime}} \leq A_{p^{\prime \prime}} \\
G_{Q}=\left(G_{P^{\prime}}\right)^{r^{\prime}}\left(G_{p^{\prime \prime}}\right)^{r^{\prime \prime}} \leq r^{\prime} G_{P^{\prime}}+r^{\prime \prime} G_{P^{\prime \prime}}<r^{\prime} A_{P^{\prime}}+r^{\prime \prime} A_{P^{\prime \prime}}=A_{Q} \\
\text { using } \sum q_{j}=1
\end{array}
\end{aligned}
$$

Hölder's Inequality We have two sets of numbers

$$
\begin{array}{ll}
x_{1} \ldots x_{n} & x_{j} \geq 0 \\
y_{1} \ldots y_{n} & y_{j} \geq 0
\end{array}
$$

α, β are positive and $\alpha+\beta=1$. Then

$$
\sum_{\nu=1}^{n} x_{\nu}^{\alpha} y_{\nu}^{\beta} \leq\left(\sum_{\nu=1}^{n} x_{\nu}\right)^{\alpha}\left(\sum_{\nu=1}^{n} y_{\nu}\right)^{\beta}
$$

with equality \Leftrightarrow the sets are proportional.

Alternative Form Suppose λ, μ are positive and $\frac{1}{\lambda}+\frac{1}{\mu}=1$

$$
\sum_{\nu=1}^{n} x_{\nu} y_{\nu} \leq\left(\sum_{\nu=1}^{n} x_{\nu}^{\lambda}\right)^{\frac{1}{\lambda}}\left(\sum_{\nu=1}^{n} y_{\nu}^{\mu}\right)^{\frac{1}{\mu}}
$$

[This result above with α, β replaced by $\frac{1}{\lambda}, \frac{1}{\mu}$ and $x_{\nu}^{\alpha}, x_{\nu}^{\beta}$ replaced by new variables x_{ν}, y_{ν}.]
This generalises to k sets and k numbers $\alpha_{1}+\ldots+\alpha_{k}=1$.
Cauchy's inequality follows with $\lambda=\mu=2$.
Proof Write $U=\sum_{\nu=1}^{n} x_{\nu} \quad V=\sum_{\nu=1}^{n} y_{\nu}$
Suppose $U V>0$ (nothing to prove otherwise).

$$
\begin{aligned}
U^{\alpha} V^{\beta}=\sum_{\nu=1}^{n} x_{\nu}^{\alpha} y_{\nu}^{\beta} & =\sum_{\nu=1}^{n}\left(\frac{x_{\nu}}{U}\right)^{\alpha}\left(\frac{y_{\nu}}{V}\right)^{\beta} \\
& \leq \sum_{\nu=1}^{n} \alpha \frac{x_{\nu}}{\nu}+\beta \frac{y_{\nu}}{\nu}=\alpha+\beta=1
\end{aligned}
$$

with equality $\Leftrightarrow \frac{x_{\nu}}{U}=\frac{y_{\nu}}{V}$ for $\nu=1,2, \ldots, n$.
These inequalities generalise to integrals.
Suppose $f(x) \geq 0 g(x) \geq 0$ are continuous on $[a b]$

$$
\int_{a}^{b} f(x) g(x) d x \leq\left(\int_{a}^{b} f^{2} d x\right)^{\frac{1}{2}}\left(\int_{a}^{b} g^{2} d x\right)^{\frac{1}{2}}
$$

This is known as Schwarz's inequality.
If $\frac{1}{\lambda}+\frac{1}{\mu}=1 \lambda>0 \mu>0$ then

$$
\int_{a}^{b} f(x) g(x) d x \leq\left(\int_{a}^{b} f^{\lambda} d x\right)^{\frac{1}{\lambda}}\left(\int_{a}^{b} g^{-\mu} d x\right)^{\frac{1}{\mu}}
$$

This is known as Hölder's inequality.

