Question

A particle is projected vertically upward in a constant gravitational field with an initial speed of v_{0}. Show that if there is a retarding force proportional to the square of the speed, the speed of the particle when it returns to its initial position is

$$
\frac{v_{0} v_{T}}{\sqrt{v_{0}^{2}+v_{T}^{2}}}
$$

where v_{T} is the terminal speed.

Answer

Do this question in 2 parts.
Upward motion

$$
\uparrow^{y} \quad \bullet m g \quad \eta m k \dot{y}^{2}
$$

Using Newton's 2nd law gives:

$$
\begin{aligned}
m \ddot{y} & =-m k \dot{y}^{2}-m g \\
\frac{d v}{d t} & =-k v^{2}-g \operatorname{Put} \frac{d v}{d t}=v \frac{d v}{d y} \\
\int \frac{v d v}{k v^{2}+Y} & =-y+C \\
\text { whence } y & =\frac{1}{2 k} \ln \left(\frac{k v_{0}^{2}+g}{k v^{2}+g}\right)
\end{aligned}
$$

where v_{0} is the initial upwards velocity.
At the highest point $v=0$.
Height attained $=\frac{1}{2 k} \ln \left(\frac{k_{0}^{2}+g}{g}\right)$
Downward motion

Using Newton's 2nd law gives:

$$
\begin{align*}
\ddot{y} & =k \dot{y}^{2}-g \\
y & =\frac{1}{2 k} \ln \left(\frac{g-k v^{2}}{g}\right)+\frac{1}{2 k} \ln \left(\frac{k v_{0}^{2}+g}{g}\right), \tag{*}
\end{align*}
$$

where $v=0$ at the highest point.
Solving for v gives $v=\sqrt{\frac{g}{v_{0}^{2}} v_{0}^{2}+\frac{g}{k}}$
Terminal velocity occurs when there is no net force on the mass while the particle is falling i.e. $m k v_{t}^{2}=m g \Rightarrow v_{t}=\sqrt{\frac{g}{k}}$.

$$
\text { Therefore } \quad v=\frac{v_{0} v_{t}}{\sqrt{v_{0}^{2}+v_{t}^{2}}}
$$

