Question

Find the gravitational field along the axis of a uniform density circular hoop as a function of distance from the centre of the hoop.

Answer

The gravitational field at A is parallel to the axis (by symmetry). Therefore the only component we have to consider is the \mathbf{i} component.

$$
\begin{aligned}
& =-G m \int_{C} \frac{\rho}{r^{2}} \cos \phi d s \\
& =-G m \rho \int_{\theta=0}^{\theta=2 \pi} \frac{\cos \phi}{r^{2}} R d \theta \text { as } d s=r d \theta \\
& =-G m \rho \frac{\cos \phi}{r^{2}} R \times 2 \pi \\
& =-\frac{2 \pi G m \rho R x}{\left(R^{2}+x^{2}\right)^{\frac{2}{3}}}
\end{aligned}
$$

$$
\text { Since } r^{2}=R^{2}+x^{2} \text { and } \cos \phi=\frac{x}{\sqrt{r^{2}+x^{2}}}
$$

