Question

Find the general solution of the equation

$$t\frac{dx}{dt} = x + te^{\frac{x}{t}}$$

Answer

$$t\frac{dx}{dt} = x + te^{\frac{x}{t}} \implies \frac{dx}{dt} = \frac{x}{t} + e^{\frac{x}{t}}$$
This is of the form $\frac{dx}{dt} = f\left(\frac{x}{t}\right)$ So let $y = \frac{x}{t} \Rightarrow \frac{dx}{dt} = t\frac{dy}{dt} + y$
So we can rewrite as

$$t\frac{dy}{dt} + y = y + e^{y}$$

$$t\frac{dy}{dt} = e^{y}$$

$$\int e^{-y} dy = \int \frac{dt}{t}$$

$$\Rightarrow -e^{-t} = \ln|t| + \text{constant}$$

$$t = Ae^{-(e^{-y})}$$