Question Sketch the region defined by the inequalities $x^2 + y^2 \le z$, $0 \le z \le 2$. If the region is occupied by a solid whose density at the point (x, y, z) is (3 - z), calculate its total mass by means of a triple integral. (HINT: Transform to cylindrical co-ordinates.)

Answer

For each z, $x^2 + y^2 \le z$ is a disc of radius \sqrt{z} . If we let z vary as $0 \le z \le 2$ we obtain the region:

Volume of region = $\iiint (3-z)d(x,y,z)$

We use the cylindrical coordinates $(\rho, \phi z)$ where $x = \rho \cos \phi$ and $y = \rho \sin \phi$. Since $x^2 + y^2 = \rho^2(\cos^2 \phi + \sin^2 \phi) = \rho^2$, the region is defined by the inequalities: $\rho^2 \le z \Rightarrow 0 \le \rho \le \sqrt{z}$, $0 \le z \le 2$ with any ϕ so that $0 \le \phi \le 2\pi$, Using $d(x, y, z) = \rho d\phi d\rho dz$

Volume of region
$$= \int_{z=0}^{z=2} \int_{\rho=0}^{\rho=\sqrt{z}} \int_{\phi=0}^{\phi=2\pi} (3-z) \rho \, d\phi \, d\rho \, dz$$
$$= \int_{z=0}^{z=2} \int_{\rho=0}^{\rho=\sqrt{z}} \left[(3-z) \rho \phi \right]_{\phi=0}^{\phi=2\pi} \, d\rho \, dz$$
$$= 2\pi \int_{z=0}^{z=2} \int_{\rho=0}^{\rho=\sqrt{z}} (3-z) \rho \, d\rho \, dz$$

$$= 2\pi \int_{z=0}^{z=2} \left[\frac{1}{2} (3-z) \rho^2 \right]_{\rho=0}^{\rho=\sqrt{z}} dz$$

$$= \pi \int_0^2 (3-z) z dz$$

$$= \pi \int_0^2 3z - z^2 dz$$

$$= \pi \left[\frac{3}{2} z^2 - \frac{1}{3} z^3 \right]_0^2$$

$$= \pi \left[6 - \frac{8}{3} \right]$$

$$= \frac{10\pi}{3}$$