Question Sketch the region defined by the inequalities $x^{2}+y^{2} \leq z$, $0 \leq z \leq 2$. If the region is occupied by a solid whose density at the point (x, y, z) is $(3-z)$, calculate its total mass by means of a triple integral. (HINT: Transform to cylindrical co-ordinates.)

Answer

For each $\mathrm{z}, x^{2}+y^{2} \leq z$ is a disc of radius \sqrt{z}. If we let z vary as $0 \leq z \leq 2$ we obtain the region:

Volume of region $=\iiint(3-z) d(x, y, z)$
We use the cylindrical coordinates $(\rho, \phi z)$ where $x=\rho \cos \phi$ and $y=$ $\rho \sin \phi$. Since $x^{2}+y^{2}=\rho^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=\rho^{2}$, the region is defined by the inequalities: $\rho^{2} \leq z \Rightarrow 0 \leq \rho \leq \sqrt{z}, \quad 0 \leq z \leq 2$ with any ϕ so that $0 \leq \phi \leq 2 \pi$, Using $d(x, y, z)=\rho d \phi d \rho d z$

$$
\begin{aligned}
\text { Volume of region } & =\int_{z=0}^{z=2} \int_{\rho=0}^{\rho=\sqrt{z}} \int_{\phi=0}^{\phi=2 \pi}(3-z) \rho d \phi d \rho d z \\
& =\int_{z=0}^{z=2} \int_{\rho=0}^{\rho=\sqrt{z}}[(3-z) \rho \phi]_{\phi=0}^{\phi=2 \pi} d \rho d z \\
& =2 \pi \int_{z=0}^{z=2} \int_{\rho=0}^{\rho=\sqrt{z}}(3-z) \rho d \rho d z
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi \int_{z=0}^{z=2}\left[\frac{1}{2}(3-z) \rho^{2}\right]_{\rho=0}^{\rho=\sqrt{z}} d z \\
& =\pi \int_{0}^{2}(3-z) z d z \\
& =\pi \int_{0}^{2} 3 z-z^{2} d z \\
& =\pi\left[\frac{3}{2} z^{2}-\frac{1}{3} z^{3}\right]_{0}^{2} \\
& =\pi\left[6-\frac{8}{3}\right] \\
& =\frac{10 \pi}{3}
\end{aligned}
$$

