Question

The following equations are written in terms of cylindrical co-ordinates (ρ, ϕ, z) . What surfaces or curves do they represent?

(a)
$$\phi = \frac{\pi}{4}, z = 2;$$

(b)
$$\rho^2 + z^2 = 9;$$

(c)
$$\rho = z \tan(\alpha)$$
 where $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ is a real constant;

(d)
$$\rho \sin(\phi) = 1, z = 0.$$

Answer

Cylindrical co-ordinates (ρ, ϕ, z) . $\rho \ge 0$ and $0 \le \phi \le 2\pi$ Also, $x = \rho \cos \phi$ and $y = \rho \sin \phi$

(a)

$$\phi = \frac{\pi}{4}$$
 and $z = 2$
This gives a half line at height $z = 2$
in the direction $\phi = \frac{\pi}{4}$
(i.e. $x = y$)

(b)
$$\rho^2 + z^2 = 9$$

Now
$$x^2 + y^2 = \rho^2 \cos^2 \phi + \rho^2 \sin^2 \phi = \rho^2$$

So we have $(x^2 + y^2) + z^2 = 9$ or $x^2 + y^2 + z^2 = 3^2$ which defines a sphere centre the origin of radius 3.

(c)
$$\rho = z \tan(\alpha)$$
 for $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$
we have the righthanded triangle

so that $\tan(\alpha) = \frac{\rho}{z}$ and hence $\rho = z \tan(\alpha)$.

If we now let ϕ vary as $0 \le \phi \le 2\pi$, we obtain a cone angle α .

(d) $\rho \sin(\phi) = 1$, z = 0. Since z = 0 we restrict to the xy plane.

Now from the triangle we have $\sin \phi = \frac{y}{\rho}$ and so $y = \rho \sin \phi$.

Hence $\rho \sin \phi = 1 \Rightarrow y = 1$, and letting the x vary we obtain the line y = 1 in the xy-plane.

